HornetQ 2.1 User Manual

Putting the buzz in messaging

Table of Contents

o= A Lo 1 o P PURPR 1
B = = o RERR 2
3. PrOJECE INFOIMMIBLION ..ottt e e ek e e e e et e e e s e e e e e s e e e e ansb e e e e e annne e e e ennneeenanns 3
0 I IS o 1LY = I T 11 o o= o RSP 3

3.2, ProjeCt INFOMMELIONeeiiiiiiiie ettt e et e e bbbt e e e e bt e e e et e e e e e nnbne e e e nnnees 3

4, MESSAGING CONCEPLS .eiieeeiiiiitiiee it e e e et e ettt et e e e e e s s et e e e eeeaeeesaaaeetaeeeaaeassasssbeaeeeeaeeasaassebeseeeaeeesesasssrrnneeaaens 4
4.1, MESSAQING CONCEPLS ...eeeiiiiiiiieiie e e e e e e ettt e e e e e e e e s ettt e e e e e e e e s e sttt eeeeeeaeessaasatsaeeeeeeessaantbraneeeaeessaanssrennes 4

4.2, MESSAOING SEYIES ..o ———— 4
4.2.1. The Message QUEUE PaTEINccoiiiiiiiiiiiiie et e e es 5

4.2.2. The Publish-SUBSCIIDE Paternc.eeiiiiiieee et e e e eeeeae e e e e e 5

4.3. DElIVEIY QUEIBINTEESeeiiiiiieieeeiiieee e ettt e ettt e e e ettt e e e sttt e e e e abe e e e ekt et e e e anb b et e e e aabbe e e e e anbne e e e annnneaeennnes 6

O I = o 0] RO PRPRPPPPPPNS 6

T B0 = o 1) Y USROS PRRRRR 6

4.6. Messaging APIS @and ProtOCOISeeeiviiiiiiiiiiiiieee e e e e e e e e e e e ee e e e e e e e e eeeeeeeeeeseeeeseseseeeeereeeeeeeresnnnees 6
4.6.1. JaAva MeSSage SEIVICE (IMS) ..ot e et et e e e e e e et e e e e e e e s e e nntbaeeeeaaeeeaanns 6

4.6.2. SySteM SPECITIC APIS ...ttt 7

4.6.3. RESTIUI APl ..ottt 7

B.6.4. STOMP ..ottt ettt e e e e bt e e e e bbb e e e e a b bt e e e a b et e e e et be e e e e bt e e e nrees 7

ST N 1V PRSP 7

O o TTe 1N = T = R PSRSPRRP 7

O T O 11 = £ OSSR 8

4.9. BridgeS N0 FOULINGveeieeiiiiiee ettt ettt e e e ekt e e e e et e e e sb et e e e e e e e e e e annn e e e e anneeeeeennes 8

I A (o 11 (= ox (U = SRR 9
5.1, COME ATCHITECIUIEeeeii ittt ettt ekttt e e s bbbt e e e e a b e e e e e sbb e e e e ansbe e e e e anbbe e e e annneeas 9

5.2. HornetQ embedded in your own appliCationcccuviieiiee i e e 11

5.3. HornetQ integrated with a JEE application SErVEr ..o, 11

5.4. HOrnetQ Stand-@lONE SEIVENoooiiiiiiiiieee e 12

6. USING TNE SEIVEN ...ttt oo et e e e st e e e ek b e et e e e a b b e e e e e st et e e e annne e e e e annne s 14
6.1. Starting and Stopping the StaNdAlONE SEIVEYcc.eiiii i 14

6.2, SEIVEN JVIM SELLINGS ...eevieieiiiiiee ettt ettt e ettt e et e e et et e e e e b be e e e e aabb e e e e e nnbae e e e nnre e e e 14

B.3. SEIVEr ClaSSPELNeeiieiiiiie e e e aa e e e s raaaaas 15

B.4. LIDrary Pathoooiiiiiiiiiiii e e e e e e e e e r e e e e e e e s aaar b e e e aaaeaeaane 15
TSV (= 4 0 0] = = 15

6.6. CONFIGUIAION TITES ...t e e e e e s e e e e e e e s anreeeeaan 15

6.7. JBOSS Microcontainer BEANS FIlEccooi ittt e e e s e e e e e e e e eeeeaeeeeaas 16

6.8. JBOSS ASA IMBEEN SEIVICE. .ociiiiieiiiiietee e e ettt e e e e e e e s e e e e e e e e s e st ea e et aaeeessassstbaeeeaaeeesasnsrenneeeas 19

6.9. The main configuration filE.ooi i e e e e 20

T. USING JMS oottt ettt ettt e e e sttt e e ekttt e e e e ns bt e e e sttt e e e an R ee et e e an Rt e e e e e R Eee e e e e nneeeeeannteaeeannreeeeeanns 21
7.1 A SIMPlEe Ordering SYSLEIM ... 21

7.2. IM'S ServVer CONFIGUIALTONeeeeiiiiiieeeiiii e ettt e ettt e e e e e e e e st e e e e e e e e e annr e e e e nanreneenn 21

RS AN N[BT ole g1 1T 18] 2= 1o o OO PP PP PPPI 22

A I L= o [SRS 23

7.5. Directly ingtantiating IMS Resources without using INDIcooviiiiiiiiiiieecce e 24

HornetQ 2.1 User Manual

7.6. Setting The CHENL ID ..o, 25
7.7. Setting The Batch Size for DUPS_OK ...ttt 25
7.8. Setting The TransaCtion BaICN SIZEcooiiiiiiiieiiiie et e e 25
S U 1o I O] PP UPPPPPPPRPN 27
8.1. Core MeSSagiNg CONCEPLScceeeiiiiiiiieieieee e e s ieitr e e e e e e e e s st bt e e e e eeeeessaaaaebaeeeeaaeeassassteaereaeeeseannrrnnnnes 27
o 0 O I AV = 27
ST Y o (o = SRR 28

ST R T 11T 1= PSRRI 28
8.1.4. ClIeNtSESSIONFACIONYveiieiiiieie ettt e ettt et e et e e sttt e e e e e e e e sb e e e e e anbee e e e annees 28

S T O 1= 01515 o o RS SP 28
8.L.6. ClIENTCONSUIMIESNtiiiieiiiiiee ettt e sttt e e ettt e ettt e e e e b bt e e e e sbb e e e e bb et e e e anbb e e e e snbn e e e e annbeeeeennbees 29

ST A O 1= 011 oo (1o PSP UPRRTRRN 29

8.2. A sSimple eXample Of USING COFEuuuuuuuuruiuiuiuruiuruiuiernrnrnrnrnrnrnrnrnrarnra...————————————————————.——.—.——————————— 29
9. Mapping JMS CoNCEPLS t0 the COTE AP ...ttt e e e e 31
10. THe ClIent ClSSPELNccoieieieiiiie et e e et e e e e bb et e e s anbe e e e e anneeeeeannes 32
O R T 0= (@ I @] { =T X 1= o | PSR S 32
O Y 1= o | PSPPI 32
10.3. IMS CHEnt WIth INDIcoiuiiiie ittt e e st e e e s snbe e e e s asbe e e e e snnreeessnnteeeean 32
T T o - 33
O O Y S = ¢ o =S PSRRI 33
11.1.1. Application-Layer FallOVESooiiiiiiiiieiiee ettt e e 33
11.1.2. Core Bridge EXAMPIEccoiiiiieeiiiie et 33
I G T =1 (0 T PO PPRTTT PP 34
1114, Clent KICKOFT ..ottt e e s st e e e e nnbr e e e s nnbneeeeane 34
11.1.5. Client-Side Load-BalanCingccccccciiiiiiiiiiiiiiiiiii s nnnnnes 34
11.2.6. ClUSLEI@ GIOUDING ...uueeeeeeeeeaeeesaaeeiiieeeaeeesaaneteeeeaaaeesasansneeeeeeaeeesaannsseeeeaaaesaaansrnneeeaaeeaaanns 34
I A O 1= == o [1= PSR 34
11.1.8. Clustered StAaNTAIONEcoiceiiiiiiie et s e e e e e e s e e e e e e e e s e ssnrnaeeeeeeeseennnnnnes 34
I TR T O W == I o PSR 34
11.1.10. Message Consumer Rate Limitingoooiiiiiiiiiee i e e 34
0 0 O = o B = 1 RS PRR 35
11.1.12. Delayed REAEIIVENYceeeeee ettt et e e et a e e et e e e e st e e e annnaeeeeennees 35
O 0 T Y PSSR 35
11.1.14. DUrable SUDSCIIPLIONveieiiiiiiieeiiie ettt e s e e et e e e e e e e ennes 35
111,15 EMDEAAEAocoieiiiieiieiee ettt e et e e et e e et b e e e e e e nre s 35
O 0t G o I I I =000 P 35
11.1.17. Instantiate IMS OBJECES DITECHIYuvviiiiieeiei e 36
I R T g 1 (0= o (o S PP P P PP PPPPTPPPPPPPPPPPIRt 36
0 0 R L PO PERSURRR 36
11.1.20. IMS BIIOGE ..ttt et e e ekttt e e et e e e e e e e e e ntn e e e e annneeas 36
12.2.21. IMX MENAGEIMENT ..eeiiieiiiiitee et e ettt e e e e e e e e e e e e s s bbb e e e e e e e e s s e anbbreeeeeaeeesannnenees 36
10,022, LagE MESSA0E ..evvvtuuieieeeiieeittisss e e e e et eettb s s s e e e e e e e e e b s s e e e e e e e e et bbb s e e e e e e e e e b e r e e e e e e e e eben s 36
11.1.23. Last-ValUE QUELEcoeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 36
11.1.24. Load Balanced ClUSLEr€d QUEUEuuuuuuurererrrerereneernneeensernennnsssssnsssnnnssnnnsmssnnnnsnnmmmmmmmmmne 36
11.2.25. MBNAGEIMENTeeiiieeiiiiiieeie e e e e e e e e e e e e e s e e e e e e s s s s s rr e e e e e e e e s s s nrr e e e e e eeeesaannrrrneeeeens 37

HornetQ 2.1 User Manual

11.2.

11.3.

11.1.26. Management NOITICAIONccooeeeei i 37
11.2.27. MESSATE COUNLESieeereeeeeeeee e et e e e e e s s s asn e e e e e e e s s s e e e e e e e s s s annnrnn e e e e e e e s s aannnrnneeeeas 37
11.1.28. MESSA0E EXPITALIONueeieieiiiiiie ettt e e et e e e et e e e s e e e e e e 37
12.2.29. IMIESSATE GIOUP ..uuettetieteaeees ettt et e e e e e s aatbbe ettt e e e e s aa st bee e et e eeeesaannbbbeeeeeeeeeaaanbbbnneeeaeanaans 37
12.1.30. MESSAGE GIOUD ..uueeeiieetiriuusseeeeeeeeattsussaeeesseeastsa s seeaeeeaessa s s e e aeeeeesbessseeeeeeeessesnaeeeeenes 37
11.2.31. MESSAGE PrIOMITY .eeeeeiiiiiiiieiie e e e e e e e s e e e e e e e e s e nbrreaeeeaas 37
11.1.32. NO CONSUMEN BUFFEIIING ...vvvvivriiieieieieieeeeeesrneesseeaernneeemerersenreemerererenrennmeeeerrnrn 38
11.1.33. Non-Transaction Failover With Server Data REPlICatiONcoevviiviieiiiiiieeiiieee e 38
R 7 o] o PO PSP PP PPPPPROPPPRRN 38
11.1.35. Pre-ACKNOWIEAGEueveiieiiiiiie ettt ettt e et e e e e e neees 38
11.1.36. Message Producer Rate Limitingveviieeeiiiiiiiiiiecee et e e e e ee s 39
e 0 O 1 T PRI 39
11.1.38. Message ReAISIHDULIONcoooeeeeie e, 39
11.1.39. QUEUE REGUESLONeeiieeiiiiiieeieeieeeesst e e e e e s s e e e e e e s s s s e e e e e e e s s ssnn e e e e e e e e e e e snnnrnnes 39
11.1.40. Queue With MESSAgE SEIECIONcciiiiiiie ittt 39
11.1.41. ReattaCh NOUE EXAMPIEcoiiiiiiie i e e e anes 39
11.1.42. Request-RePIY EXAMPIEouviiiiiee e 39
11.1.43. SChedUIE MESSAQEcooiiiiiei e ettt e e e e e e e e e et e e e e e e e e e et b e e e e e e e e e senasareees 39
O S o SRR 39
11.1.45. Send ACKNOWIEAGEMENLSuveiiiiiiiiie ettt e e e e re e e s nnrnee e e 39
12.0.46. SSL TTANSPOIT ..coeeeeiiiiitit ettt e e e e e e e e e s s e et e e e e e s sannr e e ee e e e e e s s sannnrrneeeeeens 40
11.1.47. StAtiC MESSAPE SEIECIONeiiiiiiiiee ittt et e et e e e s e e e ennbeeeesanes 40
11.1.48. Static Message Selector USING JMS ...t e e e e 40
I e B (] 1 o o P 40
11.1.50. Stomp Over Weh SOCKELScooveieiieiceee e 40
12.2.51. SYMMELNIC ClIUSENiiieieiieee e ettt et e e e e s e e e e e e e e e e et eeeeeeeeaannnnneeeeaaaess 40
11.1.52. TEMPOIarY QUEUEeeeeiieeeiiiiirtreeeeee e e s st er e e e e e s s s e e e e e e s s sasnnrne e e e e e e e s s sannnnrneeneeeeeaannes 40
0 S T o o OO PP PP PP RP ST 40
11.2.54. TOPIC HIEIArChYeeiiiiiiiie e e e e s e e e e e e s e st b aeeeeaeeeeaaanes 40
11.1.55. TOPIC SEIECION L ..ottt e e e e s e e e e e e e e e s st e e e e e e e e s eannnsbeneeeeas 40
T I T 10 oo = () 41
11.1.57. Transaction Failover With Data RepliCationcccceoiiiiiiiiiiieie e 41
11.1.58. TransaCtional SESSIONcccuiuiiiiiiee ettt e e e e et e e e e e e e s e e e e e e e e e e s sntareeeeeaeeesaannnenees 41
e A o 1= U 1 PSSO PSR 41
11.1.60. XA RECEBIVE ...ttt e et e e skt e e e st e e e e bbbt e e s aab e e e e enbn e e e e annneee s 41
O G S o o PRSPPSO 41
11.1.62. XA with TransaCtion MaNaQESueeiiieiiiiiiiiieiee e e e e e e e s e st e e e e e e s e s sabrraeeeaaeeas 41
(o= o I = o] =SSP 41
0 T 3101 (o o USRS 41
JAVE EE EXBMPIES ...ttt ettt 42
I B 1 T Y S I =11 1 o SRR RRRPR 42
11.3.2. HAINDI (High AVaAITDIHTTY) .eooiiiieiiiiiiiiiie ettt ree e 42
11.3.3. Resource Adapter ConfigUIaionccoiciiuiiiiirie e e e e e e e e e e e e e e eanes 42
11.3.4. Resource Adapter Remote Server Configurationccccceececeiiiiiiiiiennnnennnnnnnnnnnnnnnnnnes 42
R TN 1Y R =] o o PSSR 42

HornetQ 2.1 User Manual

11.3.6. MDB (Message Driven BEAN)cccooeeeiie e 42

11.3.7. SEIVIEE TTBNSPONT ...eeeiiieiee ettt e ekt e e e e e e e s e e e e s s e e e e e e nnr e e e e annnns 42

11.3.8. SerVlet SSL TIaNSPOIToeeeeiiiiiiee ittt ettt e et e e e et e e e e s e e e e e e 42

12.3.9. XA RECOVENY ..coiieeeiiittitt ettt ettt e e e bbbttt et e e e e e s e b bbb e et e e e e e e s aabb e e e e e e e e e aaansbrrneeaeeeeaans 42

12. Routing Messages With Wild Cardsc.cuuviiiiiee ittt e e e s e e e e e e e e e s s ennnnees 43
13. Understanding the HornetQ Wildcard SYNLaXeeeiieeiiiiiiiiiieiee ettt e e e enrrae e e 44
I T (1= T 0 45
T = 5 o S 46
15.1. Configuring the DINAINGS JOUNELccuuiiiiiii e 47
15.2. Configuring the JMS JOUIMELccooiuiiiiiiiiii e e e s 48
15.3. Configuring the MESSAQE JOUINALciieeiiiiiiiiiiee e s e e e e e e e e e e e e s e e e e e e e s e annrareeeeeans 48
15.4. An important note on disabling disk Write CaChE.ccuviiiiiiii e 50
SIS oS = o A L RS 50
15.6. Configuring HOrnetQ for Zero PErSISIENCEoviiiiiiiieiiieee e 51

16. Configuring the TIANSPOITcoiieiiieiiiii et e e st e e e e s e e e e st e e e s aasn e e e e e annreeeeennees 52
16.1. UNAErstanding ACCEPLOISouueeieiiitiiee ettt e e sttt e e sttt e e s sttt e e s asbb et e e e bbb e e e s sbbe e e e s anbe e e e e anneeeeenneees 52
16.2. UNderstanding CONMECLOISceeeeeiiiiiiiieieeee e e se ettt e e e e e e e s sttt e e e e e e e s e s ssbbaeeeeaaessssasnssaeeeeaeessaannnees 53
16.3. Configuring the transport directly from the client Side.coooiiiiiiiie e 53
16.4. Configuring the NEtty tranNSPOITuuuuueriiririeierrurrerrr e 54
16.4.1. Configuring NEILY TCPuiiiiiiiiiiie et e e e e e e e s es 55

16.4.2. Configuring NEILY SSLoeiiiiiiiiii et e e e e e e e s enreeeenn 56

16.4.3. Configuring NEIY HTTP ..ot e e 57

16.4.4. Configuring NEILY SEIVIELoeeeiiei i e e e e eeaeas 57

17. Detecting Dead CONNECLIONScccuvviiiiiieeeee ittt e e e e e e s e e e e e e e s s s et e e e e eeaeeesaanatbareeeeaeeesaasssereneeaeasssannes 60
17.1. Cleaning up Dead Connection Resources on the Server ..., 60
17.1.1. Closing core sessions or JM S connections that you have failed to closeccccovvecivieeeenen. 61

17.2. Detecting failure from the Client SIde.oeiiiiiiii e 62
17.3. Configuring Asynchronous ConNECtion EXECULIONccovurrieiiiiiiieiiiiiie e 62

18. Resource Manager CONfIQUIBLIONcc.uuviiiereee i e e e e e e s e e e e e e e e s e e e e e e e e s sannrraeeeaaens 63
S oYV e (o TP 64
19.2. ConsUMEr FIOW CONEIOI ...ttt e e e e st e e e e e e e e ntereeeeeaeeeas 64
19.2.2. Window-Based FIOW CONLIOLcooiiiiiiiiei et e e 64

19.1. 1.1 USING COrE AP .ttt ettt 65

S 0 2 U = 1 o T TSP 65

19.1.2. Rate limited FIOW CONIIOLcoiieiieiiiiiii e s e e 66

19.2.2.0. USING COrE APl ...t e e e e e e e s et e e e e e e e aaareaes 66

19.1.2.2. USING JMS ...ttt ettt e e ettt e e e st e e e e e st e e e e nnnt e e e e ennteeeeeannneeeas 66

19.2. Producer FIOW CONEIOLttt e e e et e e e e e e e e sttt e e e e e e e e s annnnneeeeaeeeeaannes 66
19.2.1. Window based fIOW CONIOLoeerieeeiiiei e e e e e e e 66

19.2. 1.1 USING COrE AP ..ottt e et e e e 67

19.2.1.2. USING IMS ..ottt ettt en st an st se s neeens 67

19.2.1.3. Blocking producer window based flow controlccccceeeeeeiiiiiiiiieeeee e, 67

19.2.2. Rate limited fIOW CONIIOLooeeieeiiiiii e e e e e e e 68

19.2.2.1. USING COIE APl ..oiiiiiiiiieiiieieieueiereuerereueeeaeeerererererererererereerarrerrrerrerrrrrrnrnnnrnnnnn 68

19.2.2.2. USING JMS ..ottt ettt e et e e et e e e e st e e e e e st e e e e nnsteaeeennsaeeeeanneeeas 68

HornetQ 2.1 User Manual

20. Guarantees of SeNdS AN COMIMITSueiiieeeiiiieiie e e e e e ettt e e e e e e e s s et ae e e e e aeeesaaaseesereaaeeesaaanneneneeeeaeeaaanns 70
20.1. Guarantees of Transaction COMPIELTIONcooiiiiiiiiiie e 70
20.2. Guarantees of Non Transactional MeSSage SENASccovviriieiiiiiie i 70
20.3. Guarantees of Non Transactional ACKNOWIEAGEMENLSccoiuiiieiiiiiie e 71
20.4. Asynchronous Send ACKNOWIEAGEMENLScciieiiiiiiiiiiiiiee e e e e e e e e e e s s rre e e e e e e e e e 71
20.4.1. Asynchronous Send ACKNOWIEAGEMENLSoocuiiiiiieie e 72
21. Message Redelivery and Undelivered MESSAgESccoovvviiiiiiiiicec e 73
21.1. DEl@yed REUEIIVENY .ooeiiieiie ettt e e e e e e e e e et e e e e sne e e e e e nteeeeesnsaeeeeannseeaeeeneees 73
21.1.1. Configuring Delayed REEIIVENYcoocuiiiiiiiiiei e 73
2002, EXAMPIE <.t e e e aane s 74
21.2. DEA LEEr AGUINESSESveeiieiiiiiie ettt ettt ettt e bt e e ettt e e s bbbt e e e st e e s aab e e e abbe e e e s ansbeeeeenees 74
21.2.1. Configuring Dead Letter AQArESSESccvviiiiiiie e e e e e e e e eneees 74
21.2.2. Dead Letter PropertieSooooeeei i, 74
21.2.3. EXAMPIE <. 74
21.3. DElIVErY COUNE PEISISIENCE ...ooiiiiiiieiiitiie ettt sttt e e et e e s st e e e s ssb e e e e annneeeeanes 75
22, IMESSAGE EXPITY .ttt ettt e ookttt e oo e e et e e R et e et R b et e e e e b b et e e e bn e e e e e nareee s 76
22.1. MESSAOE EXPITY .uitiiieiiieeii ittt ettt e e e e e e e e e et e e e s e ettt et e e e ae e e e et a——eraaeeaeaaanrrrnraaaeesaaanes 76
22.2. Configuring EXPIrY AGArESSESuiiiiiiiiie e e e e e e e e e e e e s s e st e e e e e e e e s s eaneeees 76
22.3. Configuring The Expiry Reaper Threadcooooeeiiiiii i, 77
224, EXBIMPIE .. eeeiieeees ettt ettt oottt e e e e e e e ettt et e e e e e e e e ataeeeeeeeeeeeaanaeaeeeeeeeeeaaannrraneaeaaeeaaanns 77
23, LAIQE IMESSAZESeteeeeiieeeeiaiiire ettt e e e e s e et e et e e e e s e e e b e et e e e e e e e e e e e et e e e e e e e R e e et e e e e e e a e r e e e e e e e e e aanrrrnnes 78
23.1. CONFIQUIING The SEIVETeiiiiiiiie ettt st e e s r e e e et b e e e e ebne e e e s annreee s 78
23.2. SEHNG ThE TIMITS ..eeveiiiiie e e e e e e e e e e e e e e e e s sea bt ereeaeeesaasnnnbanereeaeeeains 78
23.2.1. USING COrE APl ..ottt e e e e e e e e e e e e s et e e e e e e e e e e araaaaeas 79
23.2.2. USING JMS .ottt ettt e e ettt e e e ettt e e e et e e e e e nba e e e e nae e e e e e R be e e e e annee e e e e nnnr e e e e anrees 79
23.3. SUreaAMINg |8rgE MESSAgES ...eeeeeeeiiietiieiiteee e e e e ettt eaeees e e e ateaeeeeaaaeesa s snteeeeaaeeesaaannsaaeeeeaaeeeaaansnsneees 79
23.3.1. Streaming OVEr COre APl ... 80
23.3.2. SIreamMing OVEr JMS ...ttt e e et e e e et e e et r e e e e e e s 80
234, SIreamMiNg AITEINALIVEcoi it e e e e e s e e e e e e e e e s s st b aereeaeeesaanntbaaaeeaaeeeas 81
23.5. Cache Large Messages ON CHIENTcuuiiiiiii e e s e e e e e e e s s e rre e e e e e e e e e aans 82

23.6. Large MESSAgE EXAMPIE ...ccoe e ———————— 82

=0 1 0 O PPERR 83
24.1. PAOE FIIES ...t e e e e e e e e e e e e e aan 83
24.2. CONFIGUIBLION ...eiiiiittie ettt e ettt ekt e e ettt e e e e b b et e e e st et e e e e ab e e e e e aasbe e e e e anbbe e e e annbe e e e anbneeeeane 83
B G T == o 1 0T 1Y oo (SRR PPRRRR 84

PG T I o g 1o 1U = 4 o o SRR 84
244, DIOPPING MESSAGES ..vveeeeeeeeeiiittrrreeeeeeetiaiitsrereeaesssaaittreeeeeaeessaaaatsseteeeesssamtssreseseseesanmssrsseseeeeesanns 85
24.5. BIOCKING PIrOTUCENSeiiiieeieiiitteeee e e e e ettt e e e e e e ettt e e e e e e e s e e ateeeeeeaeessannseaeeeaeaeesaannsnnneeeeaaeeaans 85
24.6. Caution with Addresses with MUltiple QUEUESccoiiiiiiiiiiiiiee e 85
24.7. Paging and MESSAZE SEIECIONSceiiuriieeiiiiiie e ettt e ettt e e ettt e et e e et e e e e sabb e e e asb e e e e anr e e e e e annees 86
24.8. Paging AN DIOWSENSeiiiiiiiiiie ettt e ekttt e e e sttt e e e s bt e e e e bt e e e e anba e e e e e nnnee s 86
24.9. Paging and unacknowledged MESSAGESuuiiiiieei it e e e e e e et e e e e e e e e sanaraeeeeaeeas 86
p L e 0 o] L= TP PRRRR R 86

25. QUEUE ALLIIDULES ... 87
25.1. Predefined QUEUEScoiiiiiiieiei e ettt e e e e s ettt e e e e e e e e e et eeeeaeeessansnetaeeeeeeeesannnsneneneaaeeeaanns 87

Vi

HornetQ 2.1 User Manual

25.2. USING ThE AP .ottt et et e et 88
25.3. Configuring Queues Via AdAress SEiNGSuvveeiiririeiiiiiee et e e e e 88

26. SCNEAUIEA IMESSAOESeeeeeiiiiiie ettt ettt e ettt e et e e ekt et e e e ek et e e e e s be e e e e e bbb e e e e anbbe e e e e anbbeeesennbneeenan 20
26.1. Scheduled DElIVENY PrOPEITYcocvueiiiiiiiiee ettt e sttt e e s e e e e ennneee e 90

W I e 111 o= PP PRPPRR 20

27. LaSt-ValUB QUEBUES ... 91
27.1. Configuring Last-Valug QUEUESccooeiiiie e 91
27.2. USING LAS-VAUE PIrOPEITYeeeiiiiiiieiiiieee ettt ettt e e e e s s e e e e e e e e ane 91
27.3. EXAIMPIE ...t e e e e e e e e s 92

28. M ESSAGE GIOUDING ..veeeeueteeeeiiuiteeeeaautteeeeasteeeeaaasseeeeaassee e e e asbe e e e e aasbe e e e e aase e e e e e abs e e e e aasbs e e e e ansbe e e e e anbneeeeannneeas 93
P2 T I U T o 0 (= PSSP 93
28.2. USING JMS ... ootttk bRt e bR et Rt a e nn e nne e 93
28.3. EXAIMPIE ..o ————————— 94
28.4. EXAIMPIE ...ttt r e e e e e e e s s 94
28.5. ClUSLEIEU GIOUDINGveeeeeuteeeeeaitteeeeaiteteeastee e e e s asssee e s e st e e e e asse et e e e asst e e e e esbe e e e e ansnn e e e e annbneeesanrnneeean 94
28.5.1. Clustered Grouping BESt PraCtiCeSc.uviiiiiiiieeiiiiiie ettt 95

28.5.2. Clustered Grouping EXaAMPIEcoeieo oot a e e 96

29. Pre-ACKNOWIEAGE MOUE ...t e e e e e e e s e et re e e e e e e e e s et bt e e e e eaeeessannnnrees 97
29.1. USINg PRE_ACKNOWLEDGEccoiiiiiiiieiiit ettt e e e nnnee e 97
20.2. EXAIMPIE ...t e e e e e e e e e s s 98

OV = g T=o = 1 1< | PP PP P PP PPPPPPRRPR 99
30.1. The Management APl ...ttt et e e et e e e e br e e s et e e e s annr e e e e enees 99
30.1.1. Core ManagemENt APuuueiieiiiuieietetereure e e — i —— b — b rrrrrrrrre 100

30.1.1.1. Core Server ManagemMENToeuuuiriiieeeeieeeiitees e e e e e e et e e e e e e eearer e e e e e eeeeeennanas 100

30.1.1.2. Core Address ManagemMENLcuuuuuuummmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnennnnnnnnrnnnan.. 100

30.1.1.3. Core QUEUE MaNAGEIMENTuuuutuiurittrututuiieteuareaeeeeeaeaeeeaeaeaeaeaebebebabebeseeeseaeneneaenees 101

30.1.1.4. Other Core ReSOUrCeS ManagemMENTccuurrieiiiieieeeiieee e e e e e anneeens 102

30.1.2. IMS Management AP ... e 103

30.1.2.1. IMS Server Managementcooeiiieie e 103

30.1.2.2. IMS ConnectionFactory Managementceeeeeiiiiiiiiieieeee e escsiireee e e e e e s e esnsvenees 104

30.1.2.3. IMS QueUE MaNAGEMENTccciiieeiiiiiee e e ee e e e e e e e et e e e e e eeeerea e e e eeeeeeennnes 104

30.1.2.4. IMS TOPIC MBNAGEMENTeeiiieeiiee et e ettt e e e e e e s e e e e e e e e e eneneeeeeens 105

30.2. USINg MaNagEMENT VA IMX ..ottt e et e e et e e e e e e nnneee s 105
30.2.2. CONFIGUIING JMX ..ottt e et e e skt e e e et e e e et et e e e s nnn e e e e enbneeenns 106

30.2.1.1. MBeanServer CONfiQUIationceeveeeeiiiiciiiiieiee e e e s eeirrer e e e e e s e s e e e e e e e e e nnnnnees 106

30.2.2. EXAMPIE ..o 107

30.3. Using Management Via Core APl ...t 107
30.3.1. Configuring Core ManagemMENTcceviiiiiiiiiiiieeeceeeeeeee e e e e e e e e e e e e e e e e e eeeees 108

30.4. USINg Management VIa JMS ...ttt e e 109
30.4.1. Configuring JIMS MaNagEMENToeeiiiiiieeiiiiie et e e e e e sbae e e e nnnneeas 109

30.4.2. EXAIMPIE ..ot 109

30.5. Management NOLITICALIONSuvuiiiiii e e e e s e e e e e e e e e nrrraeeeeeas 109
30.5. 1. IMX NOUTFICATIONSeeiuieieiiiee ittt 110

30.5.2. Core Messages NOLTICAIONSceveieieiiiiiiieieeieeeieee e ee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 110

30.5.2.1. Configuring The Core Management Notification Adressccccovvvveeeeiiieeeennnne 110

Vii

HornetQ 2.1 User Manual

30.5.3. IMS Messages NOLITICAIONScocevviiiiiiiiicc e 110
O B e o o= RS RR 111
30.6. M ESSATE COUMLEIS ...ceeiieeiiiiietiteieeee e e s sttt e et e e e s s s s b e e e et e e e e s s e bbb e e et e e e e e e s s snbe b e e e eeeeeeaaannbrnneeeeaeenans 111
30.6.1. Configuring MeESSAgE COUNLEN'Suuveieiiiiiieeiitiiee e sttt e e s e e e et e e s siee e e s ssae e e e snnnneeeeanes 112
30.6.2. EXAMPIE ..ottt e e b b e e e e nnnes 113
30.7. Administering HornetQ Resources Using The JBoss AS Admin Consoleccccvvveeeeeeeeecennee, 113
30.7.1. IMS QUEUESeeeeeeeeeieieeeeeitteee e et e e e st ee e e ste e e e e ansteeeeeanseeeeeanseeeeeansseeeeaansaeeeeansneeeeennnneeas 113
30.7.2. IMS TOPICS wreeeueeeeeeiieieeeaatteeeeassteeeesasteeeeeansteeeeaassaeaeeaasseeeeeasseeeeaansseeaeasnsaneeeansneeeeaanssenas 114
30.7.3. IMS CONNECLION FACIOMESvviiiiiiiee e ieetiieiee e e e s st e e e e e s e et eeeaee e s s ssnbeaneeeaeeesannnes 114

S o1 1Y PSP PP UPPPRROPPPRP 115
31.1. Role based seCurity fOr adOrESSESciiiiii i e e e e e e e 115
31.2. Secure Sockets Layer (SSL) TranSPOITuvveeeiieeiiiiciiiiee e e e e s esiee e e e e e e e e s sarbrrre e e e e e e s seannrraeeeeeeas 117
31.3. BaSIC USEr CrEAENTIAISeeeeiiiie ettt e et e e e e e e e ettt e e e e e e e s e ennnte e e aaeeeseannenes 117
31.4. Changing the SECUNLY MEBNGOEYuvriieiitiiee et e et e e e st e e e e e e b e e e annn e e e s s nneeeesnnnes 118
31.5. JAAS SECUMLY MBNAGENceeerveeeieeceeeeieeeseeseeeeeeses e esetsses s e esteessesenesesentesesenssesenenseneneneneneans 118
3151, EXAIMPIE ..ot 119
31.6. JBOSS AS SECUNTY MANAGENuvvieiieeeei ittt e e e e s e et e e e e e e e s et e e e e e e e s s st e e e e aaeessansnrenereeaeeas 119
31.6.1. Configuring CHIENt LOGINuviiiiieiiii et e et re e e e e e e e e s annreees 119
31.7. Changing the username/password fOr CIUSLENTNGuuuuiui e 119
32. Application Server Integration and JAVA EEcooiiiiiiiiiii e 120
32.1. Configuring MeSSage-DIiVEN BEANScociuiiiiiiiiiiieeiiii ettt abeee e 120
32.1.1. Using Container-Managed TranSaCtiONScocuveieiiiiieeeiiiiiee s e e s ssnnee e nireee e 121
32.1.2. Using Bean-Managed TranSaCtioNSuueeiieeeeiiiiiiiieieeeeeseessireneeseae e e s ssnsraeeeeaeeseennnenes 122
32.1.3. Using Message Selectors with Message-Driven BEanScoooviiiiiiiiiee i 123
32.2. Sending Messages from within JEE COMPONENESccoooeieeiiii 123
32.3. Configuring the JCA AdaPLONeeiiiieee ettt e e e e e e e e et e e e e e e e e e e nneneeeeeeas 125
32.3.1. GlODEl PrOPEITIEScciiuiieiieiitiii ettt e e e e e 126
32.3.2. Adapter Outbound CONfIQUIELIONccoiiiurieeiiiiee et 129
32.3.3. Adapter INbound ConfigUIaionooccuiiiiiiee e e e e e s s e e e e e e e aenes 130
32.3.4. Configuring the adapter to use a standalone HornetQ SErVercooovvvviieeiee e, 131
32.4. High Availability INDI (HA-=INDI) ..coeiiiiiieeiiiiiee et e e e e e s e e e e nneeees 132
32.5. XA RECOVENY ...uieiieeeiieiet e e ettt e e ettt e e ettt e e e sttt e e e e astee e e e e saeeeeeassteeeeaantaeeeeansseeeeeansteeeeaansaeeeeannnenas 133
32.5.1. XA ReCOVErY CONFIQUIAIONeeeiiiiiieieiiiiiee et e ettt e e e e e e e s e e 133
32.5.1.1. CoNfiguration SEEUINGScccosurreeiiiirieeiiiieee e et e e e st e e s e e e snre e e s aneeeeeean 134

A T 11110 PSR 134

G I ST Y ST 2] T o= RSO 135
33,1 IMS Bridge Par@meEtarscccuuiiiiiie et e et e e e st e e e e e e s e et e e e e e e e s e raraeaaeas 138
33.2. Source and Target Connection FaCtONEScocvviiiiiiiiiiic e 140
33.3. Source and Target Destination FACIOMEScuuiiiiiiiiiiee it 140
33.4. QUAITY OF SEIVICE ...ttt ettt e e ettt e e e et e e e e e e e anbee e e e s annneeas 140
33.4.1. AT_MOST _ONCEoviieeeeeeeeeeseee e eee e es s en e ass s st en s e s s nenenees 141
33.4.2. DUPLICATES OK ..oiiiiiiiiie ittt ettt ettt e e e s st e e e ssbe e e e e annbe e e e s nnbneeeeans 141
33.4.3. ONCE_AND_ONLY _ONCEoceiitiiiieiiiiieeeaniieee s etieee e siteeeeasnsaeeessnnseeeesanneeeessnseeeeeanns 141
3344, EXAMPIES ..ottt ettt e e e e e et e e e et e e e e nte e e e e e nae e e e e anaeeeeennraeeeeanns 141

34. Client Reconnection and Session ReattaChmentuveiiiiiei i e e 143

viii

HornetQ 2.1 User Manual

34.1. 100% Transparent session re-attaChment ... 143
34.2. SESSION FECONMNECLION ..oiieiiiieeiiiiee e e e e e s ettt e e e e e e e sttt eeeaeeeessaanteeeeeeaeeessansebeeeeeeaeesaanssnseneeaaeessans 143
34.3. Configuring reconnection/reattachment attribDUIEScoooouiiiiiiiiiii i 144
34.4. ExceptionListeners and SessiONFailUrELISIENErScooiiiiiii i 145

35. Diverting and Splitting MESSAgE FIOWScceiiiiiiiiiiieiic e e e e e e e s e e raeeeaeas 146
K I o (e 1T S L D= o SRRSO 146
35.2. NON-EXCIUSIVE DIVEITottt ettt e e e e et e e e e e e e s s nt et e e e e e e e s aannnnreeeeaaaeeaanns 147

I 00 (=3 =] o [0 =P PP PPPRPN 148
36.1. CONFIQUING BIIAGESccoiueieieeiiiieee ettt ettt et e e sttt e e e st e e e e e nbe e e e e annneeeeanes 148

37. DUplicate MESSAgE DEIECTIONvveieeiiiiiie ettt e et e e s sttt e e s s abb e e e e nbe e e e s abeeeeeann 152
37.1. Using Duplicate Detection for Message SENAINGcc.vvveeiiieeiiiiiiiiiieeeee e 152
37.2. Configuring the DUPliCate ID CaAChEcoiiii i a e 153
37.3. Duplicate Detection and BIIOQESuuuuuuuuuuuiniiiiiiiiiiierieireunnnenrerrrnrr.———————————————————————. 154
37.4. Duplicate Detection and ClUStEr CONNECLIONSuveieiiiiieeeiiieie e e e 154
37.5. Duplicate Detection and PagiNngoooiiuireiiiiiiiee ittt 154

G T O 11 £ SRS 155
38.1. ClUSIEIS OVEIVIEW ..eeeiieiiiieiiiitiee e ettt ee e e ettt e e e sttt e e e s astb e e e e e sbe e e e e aa b et e e s aabb e e e e e enbe e e e e asbb e e e s annbeeeeennnees 155
38.2. SEIVEL GISCOVEIY ..uuiiiiiiiiiie e e e i i ettt e e e e e e et e et e e e e e s ettt e et e aeeessaabebaeeeeeaeesaaantabaeeeeaeeesansssrraneeaaeens 155
38.2.1. BroadCast GIOUPSccceeeeieiii ettt 156

38.2.2. DiSCOVENY GIOUDS ...cuutveeeeiitieeeeaiteeee s et eeeaassee e e e s st e e e assne e e e e ss e et e e enbe e e e e annne e e e e annreeeennnnes 157

38.2.3. Defining Discovery Groups ON the SEIVEYcoiiiiiiiiiiiiiee e 157

38.2.4. Discovery Groups 0N the ClIent SIdeccoiieiiiiiiiiie e 158

38.2.4.1. Configuring client discovery Using JMSccccviiiiiie e 158

38.2.4.2. Configuring client diSCoVery USING COMEccoviiiiuiieiiiee e et e e 159

38.3. Server-Side Message Load Bal@NCINGuuuuerrueieimirieiriereeererernremnmmemeemreemmmrmmrmr. 159
38.3.1. Configuring Cluster CONNECLIONSciuueiiiiiiee e e sttt ee e e e e e e et ee e e e e e e s eeneeeeeeeeaeeeeenneees 159

38.3.2. Cluster USar CredentialScuieeiiiiiiiiieeiee ettt e e e st e e e e e e e e s e e e e e e e s e nnneaeeeeeeens 161

38.4. Client-Side Load DalaNCINGoooiiiiiiiiiiiiie et 162
38.5. Specifying Members of a Cluster EXPliCItIYuvviiieieiiiieee e 163
38.5.1. Specify List of Serversonthe Client Sidec.ovevvveiiiiiiii e 163

38.5.1.1. Specifying List of Servers using JMScoovviiiiiiiiieiiieeeeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeees 163

38.5.1.2. Specifying List of Serversusing the Core APloveiiiiiiiiiiee e 164

38.5.2. Specifying List of Serversto form a ClUSLEYcooviiiiiiiiiii e 165

38.6. Message RETiSIIDULIONuiiiiiiiiie e 165

K T O 11 (= g o o 0] oo 1= U 166
38.7. 1. SYMIMELIIC CIUSLEYuuviiiiiiie e i i ittt e e e e e e e e e e e e e e et e e e e e e e e s s nb e e e eeeeeesaantareaeeaaaesaans 166

S I A @ o= o o 11 = RS UPRRURTPRR 167

39. High Availability @nd FaIlOVEScoiuiiiiiiiiiie ettt e e e e e e e e e e e e nneeeeeeanes 168
30.1. LiVE - BACKUP PaITS ...ccoiiiiiieeiiiiee ettt ettt e e ettt e e e e e e e e e e e anbe e e e e e 168

01 I 0 O N ¢ L= PRSP 168

39.1.1.1. Data REPICALIONeeveieiiiiiiee ettt e e st e e s 168

30.1.1.2. SNAIEA SLOTE ...eeiiiieiie ettt e et e e e et e e e e e snb b e e e s nntaeeeeans 170

30.2. FAIlOVEr MOUESeeeieeiiiiiie ettt e e e e e ettt e e e ettt e e e e enbae e e e eananeeeeannneeeeeennaeeeeaans 171
39.2.1. AUtomMatiC Client FaIlOVENooiiiiiiiiiiiiie et e e e e e 172

39.2.1.1. A Note on Server REPIICALIONovviiiiiiieeeiiiiie e 173

HornetQ 2.1 User Manual

39.2.1.2. Handling Blocking Calls DUring FallOVEYcuevviiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 173

39.2.1.3. Handling Failover With TranSaCtionsSoccueeiiiiiiiieeiiiiee e 173

39.2.1.4. Handling Failover With Non Transactional SESSIONScccccveeeeiiiireeeiiiieee e 174

39.2.2. Getting Notified of CoNNECLION FaIlUIeoocviiiiiiiiie e 174

39.2.3. Application-LeVEl FallOVEr ...ttt e a e 174

40. LiDaI0 NALIVE LIDIAITESeeeiiieiii ettt ettt e st e e e sttt e e e e st e e e anst e e e e snnbeeeesansaeeeeannnneeas 176
40.1. Compiling the NALIVE HHDFAIESuuuuuriiiiiiiiiiii e e rresarrrrsrerennrerernnnnrnnes 176
40.1.2. INStAll FEQUITEIMENTSciiiiiiee ettt e et e e e e e e e e e s st e e e e ann e e e e s annneeeaas 176

40.1.2. InVOKIiNG the COMPIHTBLIONcoiiuiiiiieiiiiii ettt e s e e e eeeen 177

41, Thread MANAGEIMENTeiiiiiiiiie ettt e et e e e e bt e e e e e et bt e e e e sttt e e e skt e et e e anbb e e e e e sbe e e e e anbbeeeesannneeeas 178
41.1. Server-Side Thread ManagemENtooiiiiiiiiie e e e e e e e e s r e e e e e e s e ennnrraeeeeas 178
41.1.1. Server Scheduled Thread POOIooiiiiiiiiiiie e 178

41.1.2. General Purpose Server Thread POOIuuuuuiiiiiiiiiiiiiiiiiin——————" 178

41.1.3. EXPIry REAPEN TIIEAAcoiiiiiiiiiiiii ettt e e e aaes 179

41.1.4. ASYNCAIONOUS 1Oeiiiiiiiiiie ettt e st e et e e e s annneaeas 179

41.2. Client-Side Thread ManagEmMENLcooiiiriieiiiiiee ettt e et e s san e e e s snbe e e e s sbeeee e e 179

2 oo o 1 R PPPRPPRN 181
42.1. Logging With The JB0SS APPlICaLION SEIVEYccuviiiiiee e a e 181

VAN I 01070 [0 [T o (o = 182
v B = O @ I 1= 1911 (o o SRR 182
43.2. DependenCy FIraMEWOIKSueiiiiiiiie ettt s st e st r e e e e e e e ennees 183
43.3. Connecting to the Embedded HOMMELQeeiiiiiiiieiiiiiiee e 184
A3.3.1. €O APl it e e e e e e e e e bbb e e e e e e e e e aane 184

A3.3.2. IMS AP et e et e et e e na e e e e e nreae s 184

43.4. IMS EMbedding EXAMPIEcccoo e 185

v g = (ol o (] o [@ o< = 1 o LS 186
44.1. Implementing TNE INTEICEPLOISeieiiiiiie ettt e e e e e e e e s b e e e sneee s 186
44.2. Configuring The INTEICEPIONSeeiiiiiieeeeiiee ettt e e e e e e s e e e e e 186
44.3. Interceptors 0N the ClIENT SIAEuviiiiii e e e e e e 186
Y e 0 o] = SRR 187

45, INteropPerability .occoeeeeeeeeee 188
TR0 o 1] o L 188
45.1.1. NEtiVE SEOMP SUPPOIT ...eeeeeiiiiieeeitteee e ettt e e st e et e e s s r e e e e st e e e anbe e e e e asne e e e s ansreeeeeannees 188

2L 30 00 O O g 1 = T PSSP 188

45.1.2. Mapping Stomp destinations to HornetQ addresses and qUEUEScccvvveveeeeeeeeecnnnnnen, 188

45.1.3. Stomp and IMS interoperabiltyc.uvvieiiie e 189

45.1.3.1. USINg IMS deStINGLIONScuvviiiiieiee ittt ee e et e e e e e e s s e e e e e e e s e s aarneeeeeas 189

45.1.3.2. Send and consuming Stomp message from JMS or HornetQ Core APIccco....... 189

45.1.4. SIOMP OVEr WED SOCKELSeeeiiiiiiiieeiiiet et 189

45.1.5. SIOMPCONNECEceeiiiiiiiiiieite ettt e e e e e e e e et e bbb e et e e e e s s s bbb e e e e e e e e e s e ansnrrneeeeeeeas 190

A s | PSSP 190
45.3. AMQP et e e — e e b et e e a R b et e e e nbb e e e e e nbr e e e e naaes 190

46. PerfOrmManCe TUNINGuuiieeieei e iiiiee e e e e e e s e e e et e e e e s s et e e e e e eeeeesseasbeseeeeaaeessassabeseeeaessssaassbrnneeaaeeasans 191
LG I U 1o [g To T 0= £ 1 = oL 191
L U 0 g Te I 1Y RSP ER 191

HornetQ 2.1 User Manual

LT GIC T ® 11 G I 11 o 192
46.4. TUNING TranNSPOIt SELLINGSeeeeeiiiiiieeiiiiee et e s e e et e e s s e e e e s nb e e e s nb e e e s anneeeeaannreees 193
46.5. TUNING TNE VIM .ot e ettt e e et e e e e bt et e e s nbb et e e e st b e e e e enneeeeaas 193
46.6. AVOIAING ANLI-PAITEINS ...t et e e e nb e e e e nbeeeeean 194

47. CoNfiguration REFEIENCEuvviiiiie e e e e e e e s e e e e e e e e e e s s et b e e e e e e e e e e s sanntbrneeeeens 195
A7.1. Server CONFIQUIBLIONcoiiiiiiiiie e e e et e e e e e e e e e e e e e e s et e e e e eeeesesaattbereeeaeeesaaasarrereeaeaesans 195
47.1.1. hornetg-configuration.Xml ..o 195

47.2.2. NOMMELG-JMSXIMI L.ttt e e e e e e e e e s e e e e e e e e e nnne e e e s annneeas 204

Xi

Legal Notice
Copyright © 2010 Red Hat, Inc. and others.

Thetext of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution—Share
Alike 3.0 Unported license ("CC-BY -SA™).

An explanation of CC-BY-SA isavailable at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-
BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-
BY-SA to the fullest extent permitted by applicable law.

http://creativecommons.org/licenses/by-sa/3.0/

Preface

What is HornetQ?

HornetQ is an open source project to build a multi-protocol, embeddable, very high performance, clustered,
asynchronous messaging system.

HornetQ isan example of Message Oriented Middleware (MoM) For adescription of MoMs and other messaging
concepts please see the Chapter 4.

For answers to more questions about what HornetQ is and what it isn't please visit the FAQs wiki page [http://
www.jboss.org/community/wiki/HornetQGeneral FAQs].

Why use HornetQ? Here are just afew of the reasons:

100% open source software. HornetQ is licenced using the Apache Software License v 2.0 to minimise barriers
to adoption.

HornetQ is designed with usability in mind.

Written in Java. Runs on any platform with a Java 6+ runtime, that's everything from Windows desktopsto IBM
mainframes.

Amazing performance. Our ground-bresking high performance journal provides persistent messaging
performance at rates normally seen for non-persistent messaging, our non-persistent messaging performancerocks
the boat too.

Full feature set. All thefeaturesyou'd expect in any serious messaging system, and othersyou won't find anywhere
else.

Elegant, clean-cut design with minimal third party dependencies. Run HornetQ stand-alone, run it in integrated
in your favourite JEE application server, or run it embedded inside your own product. It's up to you.

Seamless high availability. We provide a HA solution with automatic client failover so you can guarantee zero
message loss or duplication in event of server failure.

Hugely flexible clustering. Create clusters of servers that know how to load balance messages. Link
geographically distributed clusters over unreliable connections to form a globa network. Configure routing of
messages in a highly flexible way.

For a full list of features, please see the features wiki page [http://www.jboss.org/community/wiki/
HornetQFeatures| .

http://www.jboss.org/community/wiki/HornetQGeneralFAQs
http://www.jboss.org/community/wiki/HornetQFeatures

Project Information

The official HornetQ project page is http://hornetq.org/.

3.1. Software Download

The software can be download from the Download page: http://hornetg.org/downloads.html

3.2. Project Information

* Pleasetake alook at our project wiki [http://www.jboss.org/community/wiki/HornetQ]

e If you have any user questions please use our user forum [http://www.jboss.org/index.html?
modul e=bb& op=viewforum& f=312]

« If you have development related questions, please use our developer forum [http://www.jboss.org/index.html ?
modul e=bb& op=viewforum& f=313]

e Popinand chat to usin our IRC channel [irc://irc.freenode.net:6667/hornetq]
e Our project blog [http://hornetq.blogspot.com/]

¢ Follow us on twitter [http://twitter.com/hornetq]

¢ HornetQ Subversion trunk is http://anonsvn.jboss.org/repos/hornetg/trunk

e All release tags are available from http://anonsvn.jboss.org/repos/hornetg/tags
Red Hat kindly employs devel opers to work full time on HornetQ, they are:

e Tim Fox [http://jbossfox.blogspot.com] (project lead)

* Howard Gao

e Jeff Mesnil [http://jmesnil.net/weblog/]

* Clebert Suconic

e Andy Taylor

And many thanks to all our contributors, both old and new who helped create HornetQ, for afull list of the people
who made it happen, take alook at our team page [http://jboss.org/hornetg/community/team.html].

http://hornetq.org/
http://hornetq.org/downloads.html
http://www.jboss.org/community/wiki/HornetQ
http://www.jboss.org/index.html?module=bb&op=viewforum&f=312
http://www.jboss.org/index.html?module=bb&op=viewforum&f=313
irc://irc.freenode.net:6667/hornetq
http://hornetq.blogspot.com/
http://twitter.com/hornetq
http://anonsvn.jboss.org/repos/hornetq/trunk
http://anonsvn.jboss.org/repos/hornetq/tags
http://jbossfox.blogspot.com
http://jmesnil.net/weblog/
http://jboss.org/hornetq/community/team.html

Messaging Concepts

HornetQ is an asynchronous messaging system, an example of Message Oriented Middleware [http:/
en.wikipedia.org/wiki/Message oriented_middleware] , we'll just call them messaging systems in the remainder of
this book.

Well first present a brief overview of what kind of things messaging systems do, where they're useful and the kind
of concepts you'll hear about in the messaging world.

If you're already familiar with what a messaging system is and what it's capabl e of, then you can skip this chapter.

4.1. Messaging Concepts

Messaging systems allow you to loosely couple heteregenous systemstogether, whilst typically providing reliability,
transactions and many other features.

Unlike systems based on a Remote Procedure Call [http://en.wikipedia.org/wiki/Remote procedure call] (RPC)
pattern, messaging systems primarily use an asynchronous message passing pattern with no tight rel ationship between
requests and responses. Most messaging systems also support a request-response mode but this is not a primary
feature of messaging systems.

Designing systems to be asynchronous from end-to-end alows you to really take advantage of your hardware
resources, minimizing the amount of threads blocking on IO operations, and to use your network bandwidth to its
full capacity. With an RPC approach you have to wait for a response for each request you make so are limited by
the network round trip time, or latency of your network. With an asynchronous system you can pipeline flows of
messages in different directions, so are limited by the network bandwidth not the latency. This typically alows you
to create much higher performance applications.

Messaging systems decoupl e the senders of messages from the consumers of messages. The senders and consumers
of messages are completely independent and know nothing of each other. This alows you to create flexible, loosely
coupled systems.

Often, large enterprises use a messaging system to implement a message bus which loosely couples heterogeneous
systems together. Message buses often form the core of an Enterprise Service Bus [http://en.wikipedia.org/wiki/
Enterprise_service_bus]. (ESB). Using a message bus to de-couple disparate systems can allow the system to grow
and adapt more easily. It also allows more flexibility to add new systems or retire old ones since they don't have
brittle dependencies on each other.

4.2. Messaging styles

http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Enterprise_service_bus

Messaging Concepts

Messaging systems normally support two main styles of asynchronous messaging: message queue [http://
en.wikipedia.org/wiki/Message_queue] messaging (also known as point-to-point messaging) and publish subscribe
[http://en.wikipedia.org/wiki/Publish_subscribe] messaging. We'll summarise them briefly here:

4.2.1. The Message Queue Pattern

With this type of messaging you send a message to a queue. The message is then typically persisted to provide a
guarantee of delivery, then some time later the messaging system delivers the message to a consumer. The consumer
then processes the message and when it is done, it acknowledges the message. Once the message is acknowledged it
disappearsfrom the queue and is not available to be delivered again. If the system crashes before the messaging server
receives an acknowledgement from the consumer, then on recovery, the message will be available to be delivered
to a consumer again.

With point-to-point messaging, there can be many consumers on the queue but a particular message will only ever be
consumed by amaximum of one of them. Senders (also known as producers) to the queue are completely decoupled
from receivers (also known as consumers) of the queue - they do not know of each others existence.

A classic example of point to point messaging would be an order gqueue in a company's book ordering system. Each
order is represented as a message which is sent to the order queue. Let's imagine there are many front end ordering
systems which send orders to the order queue. When a message arrives on the queue it is persisted - this ensures
that if the server crashes the order is not lost. Let's a'so imagine there are many consumers on the order queue -
each representing an instance of an order processing component - these can be on different physical machines but
consuming from the same queue. The messaging system delivers each message to one and only one of the ordering
processing components. Different messages can be processed by different order processors, but asingle order isonly
processed by one order processor - this ensures orders aren't processed twice.

As an order processor receives a message, it fulfills the order, sends order information to the warehouse system and
then updates the order database with the order details. Once it's done that it acknowledges the message to tell the
server that the order has been processed and can be forgotten about. Often the send to the warehouse system, update
in database and acknowledgement will be completed in a single transaction to ensure ACID [http://en.wikipedia.org/
wiki/ACID] properties.

4.2.2. The Publish-Subscribe Pattern

With publish-subscribe messaging many senders can send messages to an entity on the server, often called atopic
(e.g. inthe IMS world).

There can be many subscriptions on a topic, a subscription is just another word for a consumer of a topic. Each
subscription receives a copy of each message sent to the topic. This differs from the message queue pattern where
each message is only consumed by a single consumer.

Subscriptions can optionally be durable which means they retain a copy of each message sent to the topic until the
subscriber consumes them - even if the server crashes or is restarted in between. Non-durable subscriptions only last
amaximum of the lifetime of the connection that created them.

An example of publish-subscribe messaging would be a news feed. As news articles are created by different editors
around the world they are sent to a news feed topic. There are many subscribers around the world who are interested
in receiving news items - each one creates a subscription and the messaging system ensures that a copy of each news
message is delivered to each subscription.

http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/ACID

Messaging Concepts

4.3. Delivery guarantees

A key feature of most messaging systemsisreliable messaging. With reliable messaging the server gives aguarantee
that the message will be delivered once and only once to each consumer of a queue or each durable subscription of a
topic, eveninthe event of systemfailure. Thisiscrucia for many businesses; e.g. you don't want your ordersfulfilled
more than once or any of your orders to be lost.

In other cases you may not care about a once and only once delivery guarantee and are happy to cope with duplicate
deliveries or lost messages - an exampl e of this might be transient stock price updates - which are quickly superseded
by the next update on the same stock. The messaging system allows you to configure which delivery guarantees you
require.

4.4. Transactions

Messaging systems typically support the sending and acknowledgement of multiple messages in a single local
transaction. HornetQ al so supports the sending and acknowl edgement of message as part of alarge global transaction
- using the Java mapping of XA; JTA.

4.5. Durability

Messages are either durable or non durable. Durable messageswill be persisted in permanent storage and will survive
server failure or restart. Non durable messageswill not survive server failure or restart. Examples of durable messages
might be orders or trades, where they cannot be lost. An example of a nhon durable message might be a stock price
update which is transitory and doesn't need to survive arestart.

4.6. Messaging APIs and protocols

How do client applications interact with messaging systemsin order to send and consume messages?

Several messaging systems provide their own proprietary APIs with which the client communicates with the
messaging system.

There are al'so some standard ways of operating with messaging systems and some emerging standardsin this space.

Let'stake abrief look at these:
4.6.1. Java Message Service (JMS)

JMS [http://en.wikipedia.org/wiki/Java Message Service] is part of Sun's JEE specification. It's a Java APl that
encapsul ates both message queue and publish-subscribe messaging patterns. IMSis alowest common denominator
specification - i.e. it was created to encapsul ate common functionality of the already existing messaging systems that
were available at the time of its creation.

JMSisavery popular APl and isimplemented by most, messaging systems. IMSis only available to clients running
Java

JMS does not define a standard wire format - it only defines a programmatic APl so IM S clients and servers from
different vendors cannot directly interoperate since each will use the vendor's own internal wire protocol.

http://en.wikipedia.org/wiki/Java_Message_Service

Messaging Concepts

HornetQ provides afully compliant IMS 1.1 API.
4.6.2. System specific APIs

Many systems provide their own programmatic APl for which to interact with the messaging system. The advantage
of thisit allows the full set of system functionality to be exposed to the client application. API's like IMS are not
normally rich enough to expose all the extra features that most messaging systems provide.

HornetQ providesits own core client API for clientsto useif they wish to have accessto functionality over and above
that accessible viathe IMS API.

4.6.3. RESTful API

REST [http://en.wikipedia.org/wiki/Representational_State Transfer] approaches to messaging are showing a lot
interest recently.

It seems plausible that APl standards for cloud computing may converge on a REST style set of interfaces and
consequently aREST messaging approach isavery strong contender for becoming the defacto method for messaging
interoperability.

With a REST approach messaging resources are manipulated as resources defined by a URI and typically using a
simple set of operations on those resources, e.g. PUT, POST, GET etc. REST approaches to messaging often use
HTTP as their underlying protocol.

The advantage of a REST approach with HTTP isin its simplicity and the fact the internet is already tuned to deal
with HTTP optimally.

HornetQ will shortly be implementing RESTful approach to messaging interoperability.
4.6.4. STOMP

Stomp [http://stomp.codehaus.org/] isavery simpletext protocol for interoperating with messaging systems. It defines
awire format, so theoretically any Stomp client can work with any messaging system that supports Stomp. Stomp
clients are available in many different programming languages.

Please see Section 45.1 for using STOMP with HornetQ.
4.6.5. AMQP

AMQP [http://en.wikipedia.org/wiki/AMQP] is a specification for interoperable messaging. It also defines a wire
format, so any AMQP client can work with any messaging system that supports AMQP. AMQP clients are available
in many different programming languages.

HornetQ will shortly be implementing AMQP.

4.7. High Availability

High Availability (HA) means that the system should remain operational after failure of one or more of the servers.
The degree of support for HA varies between various messaging systems.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://stomp.codehaus.org/
http://en.wikipedia.org/wiki/AMQP

Messaging Concepts

HornetQ provides automatic failover where your sessions are automatically reconnected to the backup server on event
of live server failure.

For more information on HA, please see Chapter 39.

4.8. Clusters

Many messaging systems allow you to create groups of messaging servers called clusters. Clusters allow the load
of sending and consuming messages to be spread over many servers. This allows your system to scale horizontally
by adding new serversto the cluster.

Degrees of support for clusters varies between messaging systems, with some systems having fairly basic clusters
with the cluster members being hardly aware of each other.

HornetQ provides very configurable state-of-the-art clustering model where messages can be intelligently load
balanced between the servers in the cluster, according to the number of consumers on each node, and whether they
are ready for messages.

HornetQ also has the ability to automatically redistribute messages between nodes of a cluster to prevent starvation
on any particular node.

For full details on clustering, please see Chapter 38.

4.9. Bridges and routing

Some messaging systems allow isolated clusters or single nodes to be bridged together, typically over unreliable
connections like awide area network (WAN), or the internet.

A bridge normally consumes from aqueue on one server and forwards messagesto another queue on adifferent server.
Bridges cope with unreliable connections, automatically reconnecting when the connections becomes available again.

HornetQ bridges can be configured with filter expressionsto only forward certain messages, and transformation can
also be hooked in.

HornetQ also allows routing between gueues to be configured in server side configuration. This allows complex
routing networks to be set up forwarding or copying messages from one destination to another, forming a global
network of interconnected brokers.

For more information please see Chapter 36 and Chapter 35.

Architecture

In this section we will give an overview of the HornetQ high level architecture.

5.1. Core Architecture

HornetQ coreis designed simply as set of Plain Old Java Objects (POJOs) - we hope you like it's clean-cut design.

We've also designed it to have asfew dependencies on external jars as possible. In fact, HornetQ core hasonly onejar
dependency, netty.jar, other than the standard JDK classes! Thisis because we use some of the netty buffer classes
internally.

This allows HornetQ to be easily embedded in your own project, or instantiated in any dependency injection
framework such as JBoss Microcontainer, Spring or Google Guice.

Each HornetQ server has its own ultra high performance persistent journal, which it uses for message and other
persistence.

Using a high performance journal allows outrageous persistence message performance, something not achievable
when using arelational database for persistence.

HornetQ clients, potentially on different physical machines interact with the HornetQ server. HornetQ currently
provides two APIs for messaging at the client side:

1. Coreclient API. Thisisasimpleintuitive Java APl that allows the full set of messaging functionality without
some of the complexities of IMS.

2. IMSclient API. The standard IMS APl is available at the client side.
JMS semantics are implemented by athin IM S facade layer on the client side.

The HornetQ server does not speak JMS and in fact does not know anything about JMS, it's a protocol agnostic
messaging server designed to be used with multiple different protocols.

When a user uses the IMS API on the client side, all IMS interactions are translated into operations on the HornetQ
core client API before being transferred over the wire using the HornetQ wire format.

The server aways just deals with core API interactions.

A schematic illustrating this relationship is shown in figure 3.1 below:

Architecture

Persistent Journal

HornetQ Server

Core client Core client
JMS Facade
User User
Application 1 Application 2

Figure 3.1 shows two user applicationsinteracting with a HornetQ server. User Application 1 isusing the IMS AP,

while User Application 2 is using the core client API directly.

Y ou can see from the diagram that the IMS APl isimplemented by athin facade layer on the client side.

10

Architecture

5.2. HornetQ embedded in your own application

HornetQ coreisdesigned asaset of smple POJOs so if you have an application that requires messaging functionality
internally but you don't want to expose that as a HornetQ server you can directly instantiate and embed HornetQ
serversin your own application.

For more information on embedding HornetQ, see Chapter 43.

5.3. HornetQ integrated with a JEE application server

HornetQ providesitsown fully functional JavaConnector Architecture (JCA) adaptor which enablesit to beintegrated
easily into any JEE compliant application server or servlet engine.

JEE application servers provide Message Driven Beans (MDBSs), which are a specia type of Enterprise Java Beans
(EJBs) that can process messages from sources such as JM S systems or mail systems.

Probably the most common use of an MDB is to consume messages from a JM S messaging system.

According to the JEE specification, a JEE application server uses a JCA adapter to integrate with a JM S messaging
system so it can consume messages for MDBs.

However, the JCA adapter is not only used by the JEE application server for consuming messages via MDBS, it is
also used when sending message to the JM S messaging system e.g. from inside an EJB or servlet.

When integrating with a JM S messaging system from inside a JEE application server it is always recommended that
thisis done via a JCA adaptor. In fact, communicating with a IMS messaging system directly, without using JCA
would beillegal according to the JEE specification.

The application server's JCA service provides extra functionality such as connection pooling and automatic
transaction enlistment, which are desirable when using messaging, say, from inside an EJB. It ispossibleto talk to a
JM'S messaging system directly from an EJB, MDB or servlet without going through a JCA adapter, but thisis not
recommended since you will not be able to take advantage of the JCA features, such as caching of IMS sessions,
which can result in poor performance.

Figure 3.2 below shows a JEE application server integrating with a HornetQ server via the HornetQ JCA adaptor.
Note that all communication between EJB sessions or entity beans and M essage Driven beans go through the adaptor
and not directly to HornetQ.

The large arrow with the prohibited sign shows an EJB session bean talking directly to the HornetQ server. Thisis
not recommended as you'll most likely end up creating a new connection and session every time you want to interact
from the EJB, which is an anti-pattern.

11

Architecture

JEE Application Server
Servlet —— ™ MDB
EJB ——»= MDB
EJB —m= MDB
¥
JCA
adaptor

HornetQ Server

For more information on using the JCA adaptor, please see Chapter 32.

5.4. HornetQ stand-alone server

HornetQ can al so be deployed as astand-alone server. Thismeansafully independent messaging server not dependent
on a JEE application server.

The standard stand-alone messaging server configuration comprises a core messaging server, a JMS service and a
JNDI service.

The role of the IMS Service is to deploy any IMS Queue, Topic and ConnectionFactory instances from any server
side hor net g-j ms. xni configuration files. It also provides a simple management API for creating and destroying
Queues, Topics and ConnectionFactory instances which can be accessed via IMX or the connection. It is a separate

12

Architecture

serviceto the HornetQ core server, since the core server is IM S agnostic. If you don't want to deploy any JM S Queue,
Topic or ConnectionFactory instances via server side XML configuration and don't require a JMS management API
on the server side then you can disable this service.

We also include a INDI server since JNDI is a common requirement when using JM Sto lookup Queues, Topics and
ConnectionFactory instances. If you do not require INDI then this service can aso be disabled. HornetQ allows you
to programmatically create IM S and core objects directly on the client side as opposed to |ooking them up from JNDI,
so aJNDI server is not always a requirement.

The stand-alone server configuration uses JBoss Microcontainer to instantiate and enforce dependencies between the
components. JBoss Microcontainer is avery lightweight POJO bootstrapper.

The stand-alone server architecture is shown in figure 3.3 below:

JBoss Microcontainer

JMNDI| Server

HornetQ core

server

JMS Service

For more information on server configuration files see Section 47.1. $

13

Using the Server

This chapter will familiarise you with how to use the HornetQ server.

Well show whereit is, how to start and stop it, and we'll describe the directory layout and what all the files are and
what they do.

For the remainder of this chapter when we talk about the HornetQ server we mean the HornetQ standalone server, in
its default configuration with a JIM S Service and JNDI service enabled.

When running embedded in JBoss Application Server the layout may be slightly different but by-and-large will be
the same.

6.1. Starting and Stopping the standalone server

In the distribution you will find a directory called bi n.

cd into that directory and you'll find a unix/linux script called r un. sh and awindows batch file called r un. bat
To run on Unix/Linux type./run. sh

To run on Windows typer un. bat

These scripts are very simple and basically just set-up the classpath and some JVM parameters and start the JBoss
Microcontainer. The Microcontainer is alight weight container used to deploy the HornetQ POJO's

To stop the server you'll also find a unix/linux script st op. sh and awindows batch file st op. bat
To run on Unix/Linux type. / st op. sh

To run on Windows type st op. bat

Please note that HornetQ requires a Java 6 or later runtime to run.

Both the run and the stop scripts use the config under confi g/ st and- al one/ non-cl ustered by default. The
configuration can be changed by running . /run. sh ../ confi g/ st and- al one/ cl ust er ed or another config of your
choosing. Thisisthe same for the stop script and the windows bat files.

6.2. Server JVM settings

The run scriptsrun. sh and run. bat set some JVM settings for tuning running on Java 6 and choosing the garbage
collection policy. We recommend using a parallel garbage collection algorithm to smooth out latency and minimise
large GC pauses.

14

Using the Server

By default HornetQ runs in a maximum of 1GiB of RAM. To increase the memory settings change the - xns and -
Xmx memory settings as you would for any Java program.

If you wish to add any more VM arguments or tune the existing ones, the run scripts are the place to do it.

6.3. Server classpath

HornetQ looks for its configuration files on the Java classpath.
The scriptsrun. sh and run. bat specify the classpath when calling Javato run the server.

Inthedistribution, the run scriptswill add the non clustered configuration directory to the classpath. Thisisadirectory
which contains a set of configuration files for running the HornetQ server in a basic non-clustered configuration. In
the distribution this directory iSconfi g/ st and- al one/ non- cl ust er ed/ from the root of the distribution.

The distribution contains several standard configuration sets for running:

* Non clustered stand-alone.

* Clustered stand-alone

¢ Non clustered in JBoss Application Server

* Clustered in JBoss Application Server

Y ou can of course create your own configuration and specify any configuration directory when running the run script.

Just make sure the directory is on the classpath and HornetQ will search there when starting up.

6.4. Library Path

If you're using the Asynchronous 10 Journal on Linux, you need to specify j ava. | i brary. pat h asaproperty on your
Java options. Thisis done automatically intherun. sh script.

If you don't specify java.library. path a your Java options then the VM will use the environment variable
LD_LI BRARY_PATH.

6.5. System properties

HornetQ can take a system property on the command line for configuring logging.

For more information on configuring logging, please see Chapter 42.

6.6. Configuration files

The configuration directory is specified on the classpath in the run scripts run. sh and run. bat This directory can
contain the following files.

* hornetg-beans. xm (Or hornet g-j boss-beans. xm if you're running inside JBoss Application Server). This
is the JBoss Microcontainer beans file which defines what beans the Microcontainer should create and what

15

Using the Server

dependenciesto enforce between them. Remember that HornetQ isjust a set of POJOs. In the stand-alone server,
it'sthe JBoss Microcontai ner which instantiates these POJOs and enforces dependencies between them and other
beans.

hor net g- confi guration. xm . This is the main HornetQ configuration file. All the parameters in this file are
described in Chapter 47. Please see Section 6.9 for more information on thisfile.

hor net g- queues. xm . This file contains predefined queues, queue settings and security settings. The file is
optional - all this configuration can aso live in hor net g- conf i gur ati on. xni . In fact, the default configuration
sets do not have ahor net g- queues. xmi file. The purpose of allowing queues to be configured in thesefilesisto
alow you to manage your queue configuration over many files instead of being forced to maintain it in asingle
file. There can be many hor net g- queues. xn files on the classpath. All will be loaded if found.

hor net g- user s. xni HornetQ ships with abasic security manager implementation which obtains user credentials
from the hor net g- users. xm file. Thisfile contains user, password and role information. For more information
on security, please see Chapter 31.

hornet g-j ms. xni The distro configuration by default includes a server side IM S service which mainly deploys
JMS Queues, Topics and ConnectionFactorys from thisfileinto JNDI. If you're not using JIMS, or you don't need
to deploy IM S objects on the server side, then you don't need thisfile. For more information on using IMS, please
see Chapter 7.

| oggi ng. properti es Thisisused to configure thelogging handlersused by the Javalogger. For moreinformation
on configuring logging, please see Chapter 42.

I og4j . xm Thisisthe Log4j configuration if the Log4j handler is configured.
Note

Theproperty fil e- depl oynment - enabl ed inthehor net g- confi gur ati on. xm configuration when set tofalse
means that the other configuration files are not loaded. Thisistrue by default.

Itisalso possibleto use system property substitution in al the configuration files. by replacing avalue with the name
of asystem property. Here is an example of this with a connector configuration:

<connector name="netty">
<factory-cl ass>org. hornetq.core.renmoting.inpl.netty. NettyConnector Factory
</factory-cl ass>
<param key="host" val ue="${hornetq. renoting. netty. host:|ocal host}" type="String"/>
<param key="port" val ue="${hornetq.renoting. netty. port:5445}" type="Integer"/>
</ connect or >

Here you can see we have replaced 2 values with system properties hornetq.renoting. netty. host and
hor net g. renot i ng. netty. port . These values will be replaced by the value found in the system property if there
is one, if not they default back to localhost or 5445 respectively. It is also possible to not supply a default. i.e.
${hornet g. renoti ng. netty. host}, however the system property must be supplied in that case.

6.7. JBoss Microcontainer Beans File

16

Using the Server

The stand-alone server is basically a set of POJOs which are instantiated by the light weight JBoss Microcontainer

[http://www.jboss.org/jbossmc/]engine.
Note

A beansfileisaso needed when the server is deployed in the JBoss Application Server but thiswill deploy a
dlightly different set of objectssincethe Application Server will already havethingslike security etc deployed.

Let'stake alook at an example beans file from the stand-alone server:

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">
<bean name="Nami ng" cl ass="org.]j np.server. Nam ngBeanl npl "/ >

<l-- JNDI server. Disable this if you don't want JNDI -->
<bean name="JNDI Server" class="org.jnp.server. Min">

<property nane="nam ngl nfo">

<i nj ect bean="Nami ng"/>

</ property>

<property nane="port">1099</ property>

<property nane="bi ndAddr ess" >l ocal host </ property>

<property name="rm Port">1098</ property>

<property nane="rm Bi ndAddr ess" >l ocal host </ property>
</ bean>

<l-- MBean server -->
<bean nane="MBeanServer" class="j avax. managenent. MBeanServer">
<constructor factoryC ass="java. | ang. managenent. Managenent Fact ory"
fact oryMet hod="get Pl at f or nivVBeanSer ver"/ >
</ bean>

<l-- The core configuration -->
<bean name="Confi gurati on" class="org. hornetq.core.config.inpl.FileConfiguration">
</ bean>

<I-- The security nanager -->
<bean nane="Hor net QSecurityManager"
cl ass="org. hornetqg. spi.core. security. Hornet QSecurityManager| npl ">
<start ignored="true"/>
<stop ignored="true"/>
</ bean>

<l-- The core server -->
<bean nane="Hor net QServer" cl ass="org. hornetq. core.server.inpl.Hornet Serverl npl ">
<start ignored="true"/>
<stop ignored="true"/>
<const ruct or >
<par anet er >
<i nj ect bean="Configuration"/>
</ par anet er >
<par anet er >
<i nj ect bean="MBeanServer"/>
</ par anet er >
<par anet er >

17

http://www.jboss.org/jbossmc/

Using the Server

<i nj ect bean="Hor net @SecurityManager"/>
</ par anet er >
</ constructor>
</ bean>

<l-- The JMS server -->
<bean nane="JMsSServer Manager"
cl ass="org. hornetq.jns.server.inpl.JVMsServer Manager | npl ">
<constructor>
<par anet er >
<i nj ect bean="Hor net QServer"/>
</ par anet er >
</ const ructor >
</ bean>

</ depl oynent >

We can see that, as well as the core HornetQ server, the stand-alone server instantiates various different POJOs, lets
look at them in turn:

JNDIServer

Many clients like to look up JMS Objects from JNDI so we provide a JINDI server for them to do that. If you
don't need JNDI this can be commented out or removed.

MBeanServer

In order to provide a IMX management interface a IMS MBean server is necessary in which to register the
management objects. Normally thisis just the default platform MBean server available in the VM instance. If
you don't want to provide a IM X management interface this can be commented out or removed.

Configuration

The HornetQ server is configured with a Configuration object. In the default stand-alone set-up it uses a
FileConfiguration object which knows to read configuration information from the file system. In different
configurations such as embedded you might want to provide configuration information from somewhere else.

Security Manager. The security manager used by the messaging server is pluggable. The default one used just
reads user-role information from the hor net g- users. xn file on disk. However it can be replaced by a JAAS
security manager, or when running inside JBoss Application Server it can be configured to use the JBoss AS
security manager for tight integration with JBoss AS security. If you've disabled security altogether you can
remove this too.

HornetQServer
Thisisthe core server. It's where 99% of the magic happens
JM SServerM anager

This deploys any JMS Objects such as IMS Queues, Topics and ConnectionFactory instances from hor net g-
jms. xm filesonthedisk. It also provides asimple management API for manipulating JM S Objects. On thewhole
it just translates and delegates its work to the core server. If you don't need to deploy IMS Queues, Topics and

18

Using the Server

ConnectionFactorys from server side configuration and don't require the IMS management interface this can be
disabled.

6.8. JBoss AS4 MBean Service.

Note

The section isonly to configure HornetQ on JBoss AS4. The service funtionality issimilar to Microcontainer
Beans

<?xm version="1.0" encodi ng="UTF-8""?>
<server>

<nbean code="org. hornetq. servi ce. Hor net QFi | eConfi gurati onService"
nanme="or g. hor net q: servi ce=Hor net QFi | eConf i gurati onServi ce">
</ mbean>

<nmbean code="org. hor net gq. servi ce. JBossASSecuri t yManager Servi ce"
nanme="or g. hor net q: servi ce=JBossASSecur i t yManager Ser vi ce" >
</ mbean>

<nbean code="org. hornetq. service. Hornet QSt art er Ser vi ce"
nanme="or g. hor net q: servi ce=Hor net QSt art er Servi ce" >
<l--lets let the JM5 Server start us-->
<attribute name="Start">fal se</attribute>

<depends optional -attribute-name="SecurityManager Servi ce"
proxy-type="attribute">org. hornetq: servi ce=JBossASSecur it yManager Ser vi ce</ depends>
<depends optional -attribute-name="Confi gurati onService"
proxy-type="attribute">org. hornetq: servi ce=Hor net Qi | eConfi gurati onSer vi ce</ depends>
</ mbean>

<nmbean code="org. hor net gq. servi ce. Hor net QJMSSt art er Ser vi ce"
nane="or g. hor net q: servi ce=Hor net QJMSSt ar t er Ser vi ce" >
<depends optional -attribute-name="Hor net Ser ver"
proxy-type="attri bute">org. hornetq: servi ce=Hor net QSt art er Ser vi ce</ depends>
</ mbean>

</ server>

This jboss-servicexml configuration file isincluded inside the hornetg-service.sar on AS4 with embebbed HornetQ.
Asyou can see, on this configuration file we are starting various services:

* HornetQFileConfigurationService
Thisisan MBean Service that takes care of the life cycle of theFi | eConfi guration PQIO
e JB0ssA SSecurityManagerService
Thisisan MBean Service that takes care of the lifecycle of the JBossASSecuri t ymanager POJO

¢ HornetQStarterService

19

Using the Server

This is an MBean Service that controls the main Hornet @Server POJO. this has a dependency on
JBossA SSecurityM anager Service and HornetQFileConfigurationService MBeans

¢ HornetQJM SStarterService

This is an MBean Service that controls the JvMsSer ver Manager | npl POJO. If you aren't using jms this can be
removed.

e IMSServerManager

Has the responsibility to start the IM SServerManager and the same behaviour that JM SServerManager Bean

6.9. The main configuration file.

The configuration for the HornetQ core server is contained in hor net g- confi guration. xn . This is what the
FileConfiguration bean uses to configure the messaging server.

There are many attributes which you can configure HornetQ. In most cases the defaults will do fine, in fact every
attribute can be defaulted which meansafilewith asingle empty conf i gur ati on elementisavalid configuration file.
The different configuration will be explained throughout the manual or you can refer to the configuration reference
here.

20

Using JMS

Although HornetQ provides a IM S agnostic messaging API, many users will be more comfortable using IMS.

JMS is a very popular API standard for messaging, and most messaging systems provide a JMS API. If you are
completely new to IM Swe suggest you follow the Sun IM Stutorial [http://java.sun.com/products/jms/tutorial/l_3 1-
fcs/doc/jms_tutoriad TOC.html] - afull IMStutorial is out of scope for this guide.

HornetQ also ships with awide range of examples, many of which demonstrate IMS APl usage. A good placeto start
would be to play around with the simple IMS Queue and Topic example, but we also provide examples for many
other parts of the IMS API. A full description of the examplesis available in Chapter 11.

In this section we'll go through the main stepsin configuring the server for IMS and creating asimple JMS program.
Welll also show how to configure and use JNDI, and also how to use JM S with HornetQ without using any JNDI.

7.1. A simple ordering system

For this chapter we're going to use avery simple ordering system as our example. It's a somewhat contrived example
because of its extreme simplicity, but it serves to demonstrate the very basics of setting up and using IMS.

We will have asingle IMS Queue called o der Queue, and we will have asingle MessagePr oducer sending an order
message to the queue and asingle MessageConsumer consuming the order message from the queue.

The queue will be adur abl e queue, i.e. it will survive aserver restart or crash. We also want to predeploy the queue,
i.e. specify the queue in the server IMS configuration so it's created automatically without us having to explicitly
create it from the client.

7.2. JMS Server Configuration

Thefilehor net g-j ms. xni 0on the server classpath contains any IMS Queue, Topic and ConnectionFactory instances
that we wish to create and make available to lookup viathe INDI.

A IM S ConnectionFactory object is used by the client to make connections to the server. It knows the location of the
server itisconnecting to, aswell asmany other configuration parameters. In most casesthe defaultswill be acceptable.

Well deploy a single IMS Queue and a single JIMS Connection Factory instance on the server for this example but
there are no limits to the number of Queues, Topics and Connection Factory instances you can deploy from the file.
Here's our configuration:

<configuration xm ns="urn: hornetq"

21

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html

Using IMS

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="urn: hornetq ../schemas/ hornetqg-jns. xsd ">

<connection-factory nane="Connecti onFactory">
<connect or s>
<connect or-ref connector-name="netty"/>
</ connect or s>
<entries>
<entry name="Connecti onFactory"/>
</entries>
</ connecti on-factory>

<queue nanme="O der Queue" >
<entry nanme="queues/ O der Queue"/ >

</ queue>

</ confi guration>

We deploy one ConnectionFactory called Connect i onFact ory and bind it in just one place in INDI as given by the
ent ry element. ConnectionFactory instances can be bound in many placesin JNDI if you require.

Note

The JM'S connection factory references a connect or called netty. Thisis areference to a connector object
deployed in the main core configuration file hor net g- confi gurati on. xm which defines the transport and
parameters used to actually connect to the server.

7.3. INDI configuration

When using JNDI from the client side you need to specify aset of INDI propertieswhich tell the INDI client whereto
locate the INDI server, amongst other things. These are often specified in afilecalledj ndi . properti es ontheclient
classpath, or you can specify them directly when creating the INDI initial context. A full INDI tutorial is outside the
scope of this document, please see the Sun JNDI tutorial [http://java.sun.com/products/jndi/tutorial/TOC.html] for
more information on how to use JNDI.

For talking to the JBoss JNDI Server, the jndi properties will look something like this:
java.nam ng.factory.initial=org.jnp.interfaces. Nam ngCont ext Fact ory

j ava. nam ng. provi der. url =j np:// nyhost: 1099
java. nam ng. factory. url . pkgs=org.jboss. nam ng: org. jnp.interfaces

Where nyhost is the hostname or IP address of the INDI server. 1099 is the port used by the INDI server and may
vary depending on how you have configured your JNDI server.

In the default standalone configuration, JINDI server ports are configured in the file hor net g- beans. xn by setting
properties on the JNDI Ser ver bean:

<bean name="JNDI Server" class="org.jnp.server. Min">

22

http://java.sun.com/products/jndi/tutorial/TOC.html

Using IMS

<property nane="nam ngl nfo">
<i nj ect bean="Nami ng"/>

</ property>

<property nane="port">1099</ property>

<property nane="bi ndAddr ess" >l ocal host </ property>

<property name="rm Port">1098</ property>

<property nane="rm Bi ndAddr ess" >l ocal host </ property>
</ bean>

Note

If you want your JNDI server to be available to non local clients make sure you change it's bind address to
something other than | ocal host !

Note

The INDI Server bean must be defined only when HornetQ is running in stand-alone mode. When HornetQ
is integrated to JBoss Application Server, JBoss AS will provide a ready-to-use JNDI server without any
additional configuration.

7.4. The code

Here's the code for the example:

First welll create a JNDI initial context from which to lookup our IM S abjects:

Initial Contect ic = new Initial Context(); ‘

Now we'll look up the connection factory:

ConnectionFactory cf = (ConnectionFactory)ic. | ookup("/ConnectionFactory"); ‘

And look up the Queue:

Queue order Queue = (Queue)ic. | ookup("/queues/ Order Queue");

Next we create a JM S connection using the connection factory:

Connection connection = cf.createConnection();

And we create a non transacted IM S Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Sessi on session = connecti on. createSessi on(fal se, Session. AUTO ACKNOALEDCGE) ; ‘

We create a MessageProducer that will send orders to the queue:

MessagePr oducer producer = session. createProducer (order Queue); ‘

And we create a MessageConsumer which will consume orders from the queue:

23

Using IMS

MessageConsumer consuner = session. creat eConsuner (order Queue) ;

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

Text Message nmessage = session. creat eText Message("This is an order");
producer . send(nessage) ;

And we consume the message:

Text Message recei vedMessage = (Text Message) consuner. receive();
Systemout.println("Got order: " + recei vedMessage. get Text ());
It'sassimple asthat. For awide range of working JM S exampl es please see the examples directory in the distribution.

Warning

Please note that JIM S connections, sessions, producers and consumers are designed to be re-used.

It's an anti-pattern to create new connections, sessions, producers and consumers for each message you
produce or consume. If you do this, your application will perform very poorly. Thisis discussed further in
the section on performance tuning Chapter 46.

7.5. Directly instantiating JMS Resources without using JNDI

Although it's avery common JM S usage pattern to lookup JMS Administered Objects (that's IM S Queue, Topic and
ConnectionFactory instances) from JNDI, in some cases a JNDI server isnot available and you still want to use IMS,
or you just think "Why do | need INDI? Why can't | just instantiate these objects directly?’

With HornetQ you can do exactly that. HornetQ supports the direct instantiation of JIMS Queue, Topic and
ConnectionFactory instances, so you don't have to use JINDI at all.

For afull working example of direct instantiation please see the IMS examples in Chapter 11.
Here's our simple example, rewritten to not use JINDI at all:

We create the IMS ConnectionFactory object via the HornetQIM SClient Utility class, note we need to provide

connection parameters and specify which transport we are using, for more information on connectors please see
Chapter 16.

Transport Configurati on transport Configurati on =

new Transport Confi gurati on(NettyConnector Factory. cl ass. get Nanme());
ConnectionFactory cf = Hornet QIMSCl i ent. creat eConnecti onFactory(transport Configuration);

24

Using IMS

We aso create the IM S Queue object via the HornetQIM SClient Utility class:

Queue order Queue = Hornet QIMSCl i ent . cr eat eQueue(" Or der Queue") ;

Next we create a IM S connection using the connection factory:

Connection connection = cf.createConnection();

And we create a non transacted JIM S Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Sessi on session = connection. createSessi on(fal se, Sessi on. AUTO_ACKNOWN.EDGE)

We create a MessageProducer that will send orders to the queue:

MessagePr oducer producer = session. createProducer (order Queue);

And we create a MessageConsumer which will consume orders from the queue:

MessageConsumer consuner = session. creat eConsuner (or der Queue) ;

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

Text Message nmessage = session. creat eText Message("This is an order");
producer . send(nessage) ;

And we consume the message:

Text Message recei vedMessage = (Text Message) consuner. receive();
Systemout.println("Got order: " + recei vedMessage. get Text());

7.6. Setting The Client ID

Thisrepresentstheclientid for aJM S client and isneeded for creating durable subscriptions. Itispossibleto configure
this on the connection factory and can be set viathecl i ent -i d element. Any connection created by this connection
factory will have this set asitsclient id.

7.7. Setting The Batch Size for DUPS_OK

When the JMS acknowledge mode is set to DUPS_X it is possible to configure the consumer so that it sends
acknowledgements in batches rather that one at a time, saving valuable bandwidth. This can be configured via the
connection factory viathedups- ok- bat ch- si ze element and isset in bytes. Thedefaultis 1024 * 1024 bytes=1 MiB.

7.8. Setting The Transaction Batch Size

25

Using IMS

When receiving messages in a transaction it is possible to configure the consumer to send acknowledgements in
batches rather than individually saving valuable bandwidth. This can be configured on the connection factory viathe
transacti on- bat ch- si ze element and is set in bytes. The default is 1024 * 1024.

26

Using Core

HornetQ core is acompletely JM S-agnostic messaging system with its own non-JMS API. We call thisthe core API.

If you don't want to use JM'S you can use the core API directly. The core API provides al the functionality of IMS
but without much of the complexity. It also provides features that are not available using JIMS.

8.1. Core Messaging Concepts

Some of the core messaging concepts are similar to JM S concepts, but core messaging concepts differ in some ways.
In general the core messaging APl issimpler than the IMS API, since we remove distinctions between queues, topics
and subscriptions. We'll discuss each of the major core messaging conceptsin turn, but to seethe API in detail, please
consult the Javadoc.

8.1.1. Message

« A message isthe unit of datawhich is sent between clients and servers.
¢ A message has a body which is a buffer containing convenient methods for reading and writing datainto it.

* A message has a set of properties which are key-value pairs. Each property key is a string and property values
can be of typeinteger, long, short, byte, byte[], String, double, float or boolean.

* A message hasan addressit isbeing sent to. When the message arrives on the server it isrouted to any queuesthat
are bound to the address - if the queues are bound with any filter, the message will only be routed to that queue if
the filter matches. An address may have many queues bound to it or even none. There may also be entities other
than queues, like diverts bound to addresses.

« Messages can be either durable or non durable. Durable messages in a durable queue will survive a server crash
or restart. Non durable messages will never survive a server crash or restart.

e Messages can be specified with apriority value between 0 and 9. O represents the lowest priority and 9 represents
the highest. HornetQ will attempt to deliver higher priority messages before lower priority ones.

» Messages can be specified with an optional expiry time. HornetQ will not deliver messages after its expiry time
has been exceeded.

e Messages also have an optional timestamp which represents the time the message was sent.

« HornetQ a so supports the sending/consuming of very large messages - much larger than canfit in available RAM
a any onetime.

27

Using Core

8.1.2. Address

A server maintains a mapping between an address and a set of queues. Zero or more queues can be bound to asingle
address. Each queue can be bound with an optional message filter. When a message is routed, it is routed to the set
of queues bound to the message's address. If any of the queues are bound with afilter expression, then the message
will only be routed to the subset of bound queues which match that filter expression.

Other entities, such as diverts can also be bound to an address and messages will also be routed there.

Note

In core, thereisno concept of aTopic, TopicisaJMSonly term. Instead, in core, we just deal with addresses
and queues.

For example, a IM S topic would implemented by a single address to which many queues are bound. Each
queue represents a subscription of the topic. A IMS Queue would be implemented as a single address to
which one queue is bound - that queue represents the IM S queue.

8.1.3. Queue

Queues can be durable, meaning the messages they contain survive a server crash or restart, as long as the messages
in them are durable. Non durable queues do not survive a server restart or crash even if the messages they contain
aredurable.

Queues can also be temporary, meaning they are automatically deleted when the client connection is closed, if they
are not explicitly deleted before that.

Queues can be bound with an optional filter expression. If a filter expression is supplied then the server will only
route messages that match that filter expression to any queues bound to the address.

Many queues can be bound to asingle address. A particular queue is only bound to a maximum of one address.
8.1.4. ClientSessionFactory

Clientsuse d i ent Sessi onFact ory instances to create d i ent Sessi on iNstances. d i ent Sessi onFact ory instances
know how to connect to the server to create sessions, and are configurable with many settings.

C i ent Sessi onFact ory instances are created using the Hor net Qd i ent factory class.
8.1.5. ClientSession

A client uses a ClientSession for consuming and producing messages and for grouping them in transactions.
ClientSession instances can support both transactional and non transactional semantics and also provide an
XAResour ce interface so messaging operations can be performed as part of a JTA [http://java.sun.com/javaee/
technologied/jtal/index.jsp] transaction.

ClientSession instances group ClientConsumers and ClientProducers.

ClientSession instances can be registered with an optional SendAcknow edgenent Handl er . This allows your client
code to be notified asynchronously when sent messages have successfully reached the server. This unique HornetQ

28

http://java.sun.com/javaee/technologies/jta/index.jsp

Using Core

feature, allows you to have full guarantees that sent messages have reached the server without having to block on
each message sent until aresponse is received. Blocking on each messages sent is costly since it requires a network
round trip for each message sent. By not blocking and receiving send acknowledgements asynchronously you can
create true end to end asynchronous systemswhich is not possible using the standard IMS API. For moreinformation
on this advanced feature please see the section Chapter 20.

8.1.6. ClientConsumer

Clients use dient Consuner instances to consume messages from a queue. Core Messaging supports both
synchronous and asynchronous message consumption semantics. d i ent Consumer instances can be configured with
an optional filter expression and will only consume messages which match that expression.

8.1.7. ClientProducer

Clients create d i ent Producer instances on d i ent Sessi on instances so they can send messages. ClientProducer
instances can specify an address to which all sent messages are routed, or they can have no specified address, and
the address is specified at send time for the message.

Warning

Please note that ClientSession, ClientProducer and ClientConsumer instances are designed to be re-used.

It's an anti-pattern to create new ClientSession, ClientProducer and ClientConsumer instances for each
message you produce or consume. If you do this, your application will perform very poorly. Thisisdiscussed
further in the section on performance tuning Chapter 46.

8.2. A simple example of using Core

Here's avery simple program using the core messaging API to send and receive a message:

d i ent Sessi onFactory factory = Hornet Qi ent.createC ientSessionFactory(

new Transport Confi gurati on(

I nVMConnect or Factory. cl ass. get Nane()));

Cl i ent Sessi on session = factory. createSession();
sessi on. cr eat eQueue(" exanpl e", "exanple", true);
Cli ent Producer producer = session.createProducer("exanple");
C i ent Message nmessage = session. creat eMessage(true);
nmessage. get BodyBuffer().witeString("Hello");
pr oducer. send(message) ;

session.start();

d i ent Consuner consuner = session. creat eConsuner ("exanpl e");

29

Using Core

d i ent Message nsgRecei ved = consuner.receive();

System out . printl n(" message

session. cl ose();

' + nmegRecei ved. get BodyBuffer().readString());

30

Mapping JMS Concepts to the Core API

This chapter describes how JM S destinations are mapped to HornetQ addresses.

HornetQ core is IMS-agnostic. It does not have any concept of a IMS topic. A JMS topic is implemented in core
as an address (the topic name) with zero or more queues bound to it. Each queue bound to that address represents
a topic subscription. Likewise, a IMS queue is implemented as an address (the JIMS gueue name) with one single
gueue bound to it which represents the IM S queue.

By convention, al JMS queues map to core queues where the core queue name has the string j ns. queue.
prepended to it. E.g. the IMS queue with the name "orders.europe” would map to the core queue with the name
"jms.queue.orders.europe’. The address at which the core queueis bound is also given by the core queue name.

For JMS topics the address at which the queues that represent the subscriptions are bound is given by prepending
the string "jms.topic.” to the name of the IMS topic. E.g. the IM S topic with name "news.europe" would map to the
core address "jms.topic.news.europe”

In other wordsif you send aJM S message to a JM S queue with name "orders.europe” it will get routed on the server
to any core queues bound to the address "jms.queue.orders.europe”. If you send a JIM S message to a IM S topic with
name "news.europe” it will get routed on the server to any core queues bound to the address " jms.topic.news.europe”.

If you want to configure settings for a JMS Queue with the name "orders.europe’, you need to configure the
corresponding core queue "jms.queue.orders.europe’:

<I-- expired nmessages in JM5 Queue "orders. europe"

will be sent to the JM5 Queue "expiry. europe" -->
<address-setting natch="j ns. queue. or ders. eur ope" >

<expi ry- addr ess>j ms. queue. expi ry. eur ope</ expi ry- addr ess>

</ addr ess-setting>

31

10

The Client Classpath

HornetQ requires severa jars on the Client Classpath depending on whether the client uses HornetQ Core API, IMS,
and JNDI.

Warning

All the jars mentioned here can be found in the | i b directory of the HornetQ distribution. Be sure you only
usethejarsfrom the correct version of therelease, you must not mix and match versions of jarsfrom different
HornetQ versions. Mixing and matching different jar versions may cause subtle errors and failuresto occur.

10.1. HornetQ Core Client

If you are using just a pure HornetQ Core client (i.e. no JIMS) then you need hornetg-core-client.jar and
netty.jar onyour client classpath.

10.2. IMS Client

If you are using JMS on the client side, then you will also need to include hornet g-j ms-client.jar andjboss-

js-api.jar.
Note

j boss-j ms-api . j ar just contains Java EE API interface classes heeded for thej avax. j ms. * classes. If you
already have ajar with these interface classes on your classpath, you will not need it.

10.3. IMS Client with JNDI

If you are looking up JMS resources from the INDI server co-located with the HornetQ standalone server, you wil
also need thejar j np-client.jar jar onyour client classpath aswell as any other jars mentioned previously.

32

11

Examples

The HornetQ distribution comes with over 70 run out-of-the-box examples demonstrating many of the features.

The examples are available in the distribution, in the exanpl es directory. Examples are split into IMS and core
examples. IMS examples show how a particular feature can be used by a norma JM S client. Core examples show
how the equivalent feature can be used by a core messaging client.

A set of Java EE examples are also provided which need the JBoss Application Server installed to be able to run.

11.1. IMS Examples

TorunaJMS example, ssmply cd into the appropriate example directory and type. / bui | d. sh (Or bui | d. bat if you
are on Windows).

Here's alisting of the examples with a brief description.
11.1.1. Application-Layer Failover

HornetQ also supports Application-Layer failover, useful in the case that replication is not enabled on the server side.

With Application-Layer failover, it's up to the application to register aJM S Except i onLi st ener with HornetQ which
will be called by HornetQ in the event that connection failure is detected.

The code in the Excepti onLi st ener then recreates the JIMS connection, session, etc on another node and the
application can continue.

Application-layer failover is an aternative approach to High Availability (HA). Application-layer failover differs
from automatic failover in that some client side coding isrequired in order to implement this. Also, with Application-
layer failover, since the old session object dies and a new one is created, any uncommitted work in the old session
will be lost, and any unacknowledged messages might be redelivered.

11.1.2. Core Bridge Example

The bri dge example demonstrates a core bridge deployed on one server, which consumes messages from a local
gueue and forwards them to an address on a second server.

Core bridges are used to create message flows between any two HornetQ servers which are remotely separated.
Core bridges are resilient and will cope with temporary connection failure allowing them to be an ideal choice for
forwarding over unreliable connections, e.g. aWAN.

33

Examples

11.1.3. Browser

Thebr owser example shows you how to use aJMS QueueBr owser with HornetQ.
Queues are a standard part of IMS, please consult the IMS 1.1 specification for full details.

A QueueBrowser isused to look at messages on the queue without removing them. It can scan the entire content of
aqueue or only messages matching a message sel ector.

11.1.4. Client Kickoff

The cli ent - ki ckof f example shows how to terminate client connections given an IP address using the IMX
management API.

11.1.5. Client-Side Load-Balancing

Thecl i ent - si de- | oad- bal anci ng example demonstrates how sessions created from asingle JMS Connect i on can
be created to different nodes of the cluster. In other words it demonstrates how HornetQ does client-side |oad-
balancing of sessions across the cluster.

11.1.6. Clustered Grouping

Thisissimilar to the message grouping example except that it demonstratesit working over a cluster. Messages sent
to different nodes with the same group id will be sent to the same node and the same consumer.

11.1.7. Clustered Queue

The cl ust er ed- queue example demonstrates a IMS queue deployed on two different nodes. The two nodes are
configured to form a cluster. We then create a consumer for the queue on each node, and we create a producer on
only one of the nodes. We then send some messages via the producer, and we verify that both consumers receive the
sent messages in a round-robin fashion.

11.1.8. Clustered Standalone

Thecl ust er ed- st andal one example demonstrates how to configure and starts 3 cluster nodes on the same machine
to form a cluster. A subscriber for a IMS topic is created on each node, and we create a producer on only one of
the nodes. We then send some messages via the producer, and we verify that the 3 subscribers receive al the sent

messages.
11.1.9. Clustered Topic

The cl ust er ed- t opi ¢ example demonstrates a JMS topic deployed on two different nodes. The two nodes are
configured to form a cluster. We then create a subscriber on the topic on each node, and we create a producer on
only one of the nodes. We then send some messages via the producer, and we verify that both subscribers receive
all the sent messages.

11.1.10. Message Consumer Rate Limiting

Examples

With HornetQ you can specify a maximum consume rate at which a JM S MessageConsumer will consume messages.
This can be specified when creating or deploying the connection factory.

If thisvalueis specified then HornetQ will ensure that messages are never consumed at arate higher than the specified
rate. Thisisaform of consumer throttling.

11.1.11. Dead Letter

The dead- | et t er example shows you how to define and deal with dead |etter messages. M essages can be delivered
unsuccessfully (e.g. if the transacted session used to consume them is rolled back).

Such a message goes back to the IMS destination ready to be redelivered. However, this meansit is possible for a
message to be delivered again and again without any success and remain in the destination, clogging the system.

To prevent this, messaging systems define dead | etter messages: after a specified unsuccessful delivery attempts, the
message is removed from the destination and put instead in a dead letter destination where they can be consumed
for further investigation.

11.1.12. Delayed Redelivery

The del ayed- redel i very example demonstrates how HornetQ can be configured to provide a delayed redelivery in
the case a message needs to be redelivered.

Delaying redelivery can often be useful inthe casethat clientsregularly fail or roll-back. Without adelayed redelivery,
the system can get into a "thrashing" state, with delivery being attempted, the client rolling back, and delivery being
re-attempted in quick succession, using up valuable CPU and network resources.

11.1.13. Divert

HornetQ diverts allow messages to be transparently "diverted” or copied from one address to another with just some
simple configuration defined on the server side.

11.1.14. Durable Subscription

The durabl e-subscripti on example shows you how to use a durable subscription with HornetQ. Durable
subscriptions are a standard part of IMS, please consult the IMS 1.1 specification for full details.

Unlike non-durable subscriptions, the key function of durable subscriptions is that the messages contained in them
persist longer than the lifetime of the subscriber - i.e. they will accumulate messages sent to the topic even if there
is no active subscriber on them. They will also survive server restarts or crashes. Note that for the messages to be
persisted, the messages sent to them must be marked as durable messages.

11.1.15. Embedded
The enbedded example shows how to embed the HornetQ server within your own code.

11.1.16. HTTP Transport

Thehtt p-transport example shows you how to configure HornetQ to use the HTTP protocol asits transport layer.

35

Examples

11.1.17. Instantiate JMS Objects Directly

Usually, IMS Objects such as Connect i onFact ory, Queue and Topi ¢ instances are looked up from JNDI before being
used by the client code. This abjects are called "administered objects’ in IMS terminology.

However, in some cases a JNDI server may not be available or desired. To cometo the rescue HornetQ also supports
the direct instantiation of these administered objects on the client side so you don't have to use JNDI for IMS.

11.1.18. Interceptor

HornetQ allows an application to use an interceptor to hook into the messaging system. Interceptors allow you to
handle various message events in HornetQ.

11.1.19. JAAS

Thej aas example shows you how to configure HornetQ to use JAAS for security. HornetQ can leverage JAAS to
delegate user authentication and authorization to existing security infrastructure.

11.1.20. JMS Bridge
Thej ns- bri ge example shows how to setup a bridge between two standal one HornetQ servers.

11.1.21. JIMX Management

Thej mx example shows how to manage HornetQ using JIMX.
11.1.22. Large Message

The | ar ge- message example shows you how to send and receive very large messages with HornetQ. HornetQ
supports the sending and receiving of huge messages, much larger than can fit in available RAM on the client or
server. Effectively the only limit to message size is the amount of disk space you have on the server.

Large messages are persisted on the server so they can survive a server restart. In other words HornetQ doesn't just
do asimple socket stream from the sender to the consumer.

11.1.23. Last-Value Queue

The | ast - val ue- queue example shows you how to define and deal with last-value queues. Last-value queues are
specia queues which discard any messages when a newer message with the same value for awell-defined last-value
property is put in the queue. In other words, alast-value queue only retains the last value.

A typical example for last-value queue is for stock prices, where you are only interested by the latest price for a
particular stock.

11.1.24. Load Balanced Clustered Queue

The cl ust er ed- queue example demonstrates a IMS queue deployed on two different nodes. The two nodes are
configured to form a cluster.

36

Examples

We then create a consumer on the queue on each node, and we create a producer on only one of the nodes. We then
send some messages via the producer, and we verify that both consumers receive the sent messages in around-robin
fashion.

In other words, HornetQ load balances the sent messages across all consumers on the cluster
11.1.25. Management

The management example shows how to manage HornetQ using JMS Messages to invoke management operations
on the server.

11.1.26. Management Notification

The managenent - not i fi cat i on example shows how to receive management notifications from HornetQ using IM S
messages. HornetQ servers emit management notifications when events of interest occur (consumers are created or
closed, addresses are created or deleted, security authentication fails, etc.).

11.1.27. Message Counter

The nessage- count er s example shows you how to use message counters to obtain message information for aJMS
queue.

11.1.28. Message Expiration

The expi ry example shows you how to define and deal with message expiration. Messages can be retained in the
messaging system for alimited period of time before being removed. IM S specification states that clients should not
receive messages that have been expired (but it does not guarantee thiswill not happen).

HornetQ can assign an expiry address to a given queue so that when messages are expired, they are removed from
the queue and sent to the expiry address. These "expired”’ messages can later be consumed from the expiry address
for further inspection.

11.1.29. Message Group

The nessage- gr oup example shows you how to configure and use message groups with HornetQ. Message groups
allow you to pin messages so they are only consumed by a single consumer. Message groups are sets of messages
that has the following characteristics:

e Messagesin amessage group share the same group id, i.e. they have same JM SX Groupl D string property values
e The consumer that receives the first message of a group will receive all the messages that belongs to the group
11.1.30. Message Group

The nessage- gr oup2 example shows you how to configure and use message groups with HornetQ via a connection
factory.

11.1.31. Message Priority

37

Examples

Message Priority can be used to influence the delivery order for messages.
It can be retrieved by the message's standard header field 'IM SPriority' as defined in JM S specification version 1.1.

The value is of type integer, ranging from 0O (the lowest) to 9 (the highest). When messages are being delivered,
their priorities will effect their order of delivery. Messages of higher priorities will likely be delivered before those
of lower priorities.

Messages of equal priorities are delivered in the natural order of their arrival at their destinations. Please consult the
JMS 1.1 specification for full details.

11.1.32. No Consumer Buffering

By default, HornetQ consumers buffer messages from the server in a client side buffer before you actually receive
them on the client side. Thisimproves performance since otherwise every time you called receive() or had processed
the last message in a Messageli st ener onMessage() Mmethod, the HornetQ client would have to go the server to
request the next message, which would then get sent to the client side, if one was available.

Thiswould involve a network round trip for every message and reduce performance. Therefore, by default, HornetQ
pre-fetches messages into a buffer on each consumer.

In some case buffering is not desirable, and HornetQ allows it to be switched off. This example demonstrates that.
11.1.33. Non-Transaction Failover With Server Data Replication

The non-transaction-failover example demonstrates two servers coupled as a live-backup pair for high
availability (HA), and a client using a non-transacted JM S session failing over from live to backup when the live
server is crashed.

HornetQ implements failover of client connections between live and backup servers. This is implemented by the
replication of state between live and backup nodes. When replication is configured and alive node crashes, the client
connections can carry and continue to send and consume messages. When non-transacted sessions are used, once and
only once message delivery is not guaranteed and it is possible that some messages will be lost or delivered twice.

11.1.34. Paging

The pagi ng example shows how HornetQ can support huge queues even when the server isrunning in limited RAM.
It does this by transparently paging messages to disk, and depaging them when they are required.

11.1.35. Pre-Acknowledge

Standard JMS supports three acknowledgement modes: AUTO ACKNOALEDGE, CLI ENT_ACKNOW.EDGE, and
DUPS_OK_ACKNOW.EDGE. For a full description on these modes please consult the IMS specification, or any JMS
tutorial.

All of these standard modes involve sending acknowledgements from the client to the server. However in some
cases, you really don't mind losing messages in event of failure, so it would make sense to acknowledge the message
on the server before delivering it to the client. This example demonstrates how HornetQ allows this with an extra
acknowledgement mode.

38

Examples

11.1.36. Message Producer Rate Limiting

Theproducer-rte-1int exampledemonstrates how, with HornetQ, you can specify amaximum send rate at which
aJM S message producer will send messages.

11.1.37. Queue
A simple example demonstrating a JM S queue.
11.1.38. Message Redistribution

The queue- nessage-r edi st ri but i on example demonstrates message redistribution between queues with the same
name deployed in different nodes of a cluster.

11.1.39. Queue Requestor
A simple example demonstrating a JM S queue requestor.
11.1.40. Queue with Message Selector

The queue- sel ect or example shows you how to selectively consume messages using message selectors with queue
consumers.

11.1.41. Reattach Node example

The Reattach Node example shows how a client can try to reconnect to the same server instead of failing
the connection immediately and notifying any user ExceptionListener objects. HornetQ can be configured to
automatically retry the connection, and reattach to the server when it becomes available again across the network.

11.1.42. Request-Reply example
A simple example showing the IM S request-response pattern.

11.1.43. Scheduled Message

The schedul ed- ressage example shows you how to send a scheduled message to a IMS Queue with HornetQ.
Scheduled messages won't get delivered until a specified timein the future.

11.1.44. Security
Thesecurity example shows you how configure and use role based queue security with HornetQ.
11.1.45. Send Acknowledgements

The send-acknow edgenents example shows you how to use HornetQ's advanced asynchronous send
acknowledgements feature to obtain acknowledgement from the server that sends have been received and processed
in a separate stream to the sent messages.

39

Examples

11.1.46. SSL Transport
Thesssl - enabl ed shows you how to configure SSL with HornetQ to send and receive message.
11.1.47. Static Message Selector

The stati c-sel ect or example shows you how to configure a HornetQ core queue with static message selectors
(filters).

11.1.48. Static Message Selector Using JMS

The stati c-sel ector-j s example shows you how to configure a HornetQ queue with static message selectors
(filters) using IMS.

11.1.49. Stomp
The st onp example shows you how to configure a HornetQ server to send and receive Stomp messages.
11.1.50. Stomp Over Web Sockets

The st onp- websocket s example shows you how to configure a HornetQ server to send and receive Stomp messages
directly from Web browsers (provided they support Web Sockets).

11.1.51. Symmetric Cluster

Thesymet ri c-cl ust er example demonstrates a symmetric cluster set-up with HornetQ.

HornetQ has extremely flexible clustering which allows you to set-up serversin many different topol ogies. The most
common topology that you'll perhaps be familiar with if you are used to application server clustering is a symmetric
cluster.

With a symmetric cluster, the cluster is homogeneous, i.e. each node is configured the same as every other node, and
every node is connected to every other node in the cluster.

11.1.52. Temporary Queue

A simple example demonstrating how to use a JMS temporary queue.
11.1.53. Topic

A simple example demonstrating a IM S topic.

11.1.54. Topic Hierarchy

HornetQ supports topic hierarchies. With a topic hierarchy you can register a subscriber with a wild-card and that
subscriber will receive any messages sent to an address that matches the wild card.

11.1.55. Topic Selector 1

40

Examples

Thet opi c- sel ect or - exanpl el example shows you how to send message to a JM S Topic, and subscribe them using
selectors with HornetQ.

11.1.56. Topic Selector 2

Thet opi c- sel ect or - exanpl e2 example shows you how to selectively consume messages using message selectors
with topic consumers.

11.1.57. Transaction Failover With Data Replication

Thetransaction-fail over example demonstrates two servers coupled as a live-backup pair for high availability
(HA), and aclient using atransacted JM 'S session failing over from live to backup when the live server is crashed.

HornetQ implements failover of client connections between live and backup servers. This is implemented by the
replication of data between live and backup nodes. When replication is configured and alive node crashes, the client
connections can carry and continue to send and consume messages. When transacted sessions are used, once and only
once message delivery is guaranteed.

11.1.58. Transactional Session

Thetransactional example showsyou how to use atransactional Session with HornetQ.

11.1.59. XA Heuristic

The xa- heuristi ¢ example shows you how to make an XA heuristic decision through HornetQ Management
Interface. A heuristic decision is a unilateral decision to commit or rollback an XA transaction branch after it has
been prepared.

11.1.60. XA Receive

The xa- r ecei ve example shows you how message receiving behavesin an XA transaction in HornetQ.

11.1.61. XA Send

The xa- send example shows you how message sending behavesin an XA transaction in HornetQ.

11.1.62. XA with Transaction Manager

The xa-wi t h-j t a example shows you how to use JTA interfaces to control transactions with HornetQ.

11.2. Core API Examples
To run a core example, simply cd into the appropriate example directory and type ant
11.2.1. Embedded

This example shows how to embed the HornetQ server within your own code.

41

Examples

11.3. Java EE Examples

Most of the Java EE examples can be run the following way. simply cd into the appropriate example directory and
type ant depl oy. Thiswill create a new JBoss AS profile and start the server. When the server is started from a
different window typeant run to run the example. Some examples require further steps, please refer to the examples
documentation for further instructions.

11.3.1. EJB/JMS Transaction

An example that shows using an EJB and JM S together within a transaction.

11.3.2. HAJNDI (High Availability)

A simple example demonstrating using JNDI within a cluster.

11.3.3. Resource Adapter Configuration

This example demonstrates how to configure several properties on the HornetQ JCA resource adaptor.
11.3.4. Resource Adapter Remote Server Configuration

This example demonstrates how to configure the HornetQ resource adapter to talk to a remote HornetQ server
11.3.5. JMS Bridge

An example demonstrating the use of the HornetQ JM S bridge.

11.3.6. MDB (Message Driven Bean)

A simple example of a message driven bean.

11.3.7. Servlet Transport

An example of how to use the HornetQ servlet transport.

11.3.8. Servlet SSL Transport

An example of how to use the HornetQ servlet transport over SSL.

11.3.9. XA Recovery

An example of how XA recovery works within the JBoss Application server using HornetQ.

42

12

Routing Messages With Wild Cards
HornetQ allows the routing of messages via wildcard addresses.

If a queue is created with an address of say queue. news. # then it will receive any messages sent to addresses that
match this, for instance queue. news. eur ope OF queue. news. usa Of queue. news. usa. spor t . If you create aconsumer
on this queue, this allows a consumer to consume messages which are sent to a hierarchy of addresses.

Note
In IMS terminology this allows "topic hierarchies" to be created.

To enable this functionality set the property wi | d- car d- r out i ng- enabl ed in the hor net g- confi gurati on. xm file
totrue. Thisistrue by default.

For more information on the wild card syntax take alook at Chapter 13 chapter, also see Section 11.1.54.

13

Understanding the HornetQ Wildcard Syntax

HornetQ uses a specific syntax for representing wildcards in security settings, address settings and when creating
consumers.

The syntax is similar to that used by AMQP [http://www.amgp.org].

A HornetQ wildcard expression contains words delimited by the character *. ' (full stop).
The special characters'#' and *' also have special meaning and can take the place of aword.
The character '#' means 'match any sequence of zero or more words.

The character +' means 'match a single word'.

So the wildcard 'news.europe# would match 'news.europe, 'news.europe.sport’, 'news.europe.politics, and
'news.europe.politics.regional’ but would not match 'news.usa, 'news.usa.sport' nor 'entertainment'.

The wildcard 'news.*' would match 'news.europe', but not 'news.europe.sport'.

Thewildcard 'news.* .sport' would match 'news.europe.sport' and also 'news.usa.sport’, but not 'news.europe.politics.

http://www.amqp.org

14

Filter Expressions

HornetQ provides a powerful filter language based on a subset of the SQL 92 expression syntax.

It is the same as the syntax used for JIM S selectors, but the predefined identifiers are different. For documentation
on JM S selector syntax please the IM S javadoc for javax.jms.Message [http://java.sun.com/javaee/5/docs/api/javax/
jms/Message.html].

Filter expressions are used in several placesin HornetQ

Predefined Queues. When pre-defining a queue, either in hor net g- confi gurati on. xni OfF hornetg-j ms. xm a
filter expression can be defined for a queue. Only messages that match the filter expression will enter the queue.

Core bridges can be defined with an optional filter expression, only matching messages will be bridged (see
Chapter 36).

Diverts can be defined with an optiona filter expression, only matching messages will be diverted (see
Chapter 35).

Filter are also used programmatically when creating consumers, queues and in several places as described in
Chapter 30.

There are some differences between JM S selector expressions and HornetQ core filter expressions. Whereas IMS
selector expressions operate on a JMS message, HornetQ core filter expressions operate on a core message.

The following identifiers can be used in a core filter expressions to refer to attributes of the core message in an
expression:

HQPri ori ty. To refer to the priority of a message. Message priorities are integers with valid values fromo - 9.
0 isthe lowest priority and 9 isthe highest. E.g. HQPriority = 3 AND animal = ' aardvark'

HQExpi r at i on. To refer to the expiration time of amessage. The value is along integer.

HQDur abl e. To refer to whether a message is durable or not. The value is a string with valid values: DURABLE or
NON_DURABLE.

HQTi nest anp. The timestamp of when the message was created. The value is along integer.

HGsi ze. The size of amessage in bytes. The value is an integer.

Any other identifiers used in core filter expressions will be assumed to be properties of the message.

45

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

15

Persistence

In this chapter we will describe how persistence works with HornetQ and how to configure it.

HornetQ ships with a high performance journal. Since HornetQ handles its own persistence, rather than relying on a
database or other 3rd party persistence engineit is very highly optimised for the specific messaging use cases.

A HornetQ journa is an append only journal. It consists of a set of files on disk. Each file is pre-created to a fixed
size and initidly filled with padding. As operations are performed on the server, e.g. add message, update message,
del ete message, records are appended to the journal. When one journal fileis full we move to the next one.

Because records are only appended, i.e. added to the end of the journal we minimise disk head movement, i.e. we
minimise random access operations which is typically the slowest operation on a disk.

Making the file size configurable means that an optimal size can be chosen, i.e. making each filefit on adisk cylinder.
Modern disk topologies are complex and we are not in control over which cylinder(s) the file is mapped onto so
thisis not an exact science. But by minimising the number of disk cylinders the file is using, we can minimise the
amount of disk head movement, since an entire disk cylinder is accessible simply by the disk rotating - the head does
not have to move.

As delete records are added to the journal, HornetQ has a sophisticated file garbage collection agorithm which can
determine if a particular journal file is needed any more - i.e. has al it's data been deleted in the same or other files.
If so, thefile can be reclaimed and re-used.

HornetQ also has a compaction agorithm which removes dead space from the journal and compresses up the data
so it takes up lessfiles on disk.

Thejournal also fully supports transactional operation if required, supporting both local and XA transactions.

The majority of the journal is written in Java, however we abstract out the interaction with the actual file system to
allow different pluggable implementations. HornetQ ships with two implementations:

» JavaNIO [http://en.wikipedia.org/wiki/New_l/Q].

The first implementation uses standard Java N1O to interface with the file system. This provides extremely good
performance and runs on any platform where there's a Java 6+ runtime.

e Linux Asynchronous 10

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous IO library (AlO).
With AlO, HornetQ will be called back when the data has made it to disk, alowing us to avoid explicit syncs
altogether and simply send back confirmation of completion when AlO informs usthat the data has been persisted.

46

http://en.wikipedia.org/wiki/New_I/O

Persistence

Using AIO will typically provide even better performance than using Java NIO.

The AlO journal is only available when running Linux kernel 2.6 or later and after having installed libaio (if it's
not already installed). For instructions on how to install libaio please see Section 15.5.

Also, please note that AIO will only work with the following file systems: ext2, ext3, ext4, jfs, xfs. With other
file systems, e.g. NFS it may appear to work, but it will fall back to a slower sychronous behaviour. Don't put
the journal on a NFS share!

For more information on libaio please see Chapter 40.

libaio is part of the kernel project.

The standard HornetQ core server uses two instances of the journal:

Bindingsjournal.

Thisjournal isused to store bindingsrelated data. That includes the set of queues that are deployed on the server
and their attributes. It also stores data such as id sequence counters.

The bindingsjournal isalwaysaNIO journa asit istypically low throughput compared to the message journal.
JMSjournal.

This journal instance stores all JMS related data, This is basically any IMS Queues, Topics and Connection
Factories and any JNDI bindings for these resources.

Any IM S Resources created via the management APl will be persisted to thisjournal. Any resources configured
via configuration files will not. The IMS Journal will only be created if IMS is being used.

Message journal.

This journal instance stores all message related data, including the message themselves and also duplicate-id
caches.

By default HornetQ will try and use an A1O journal. If AIO is not available, e.g. the platform is not Linux with
the correct kernel version or AlO has not been installed then it will automatically fall back to using Java NIO
which is available on any Java platform.

For large messages, HornetQ persists them outside the message journal. Thisis discussed in Chapter 23.

HornetQ can also be configured to page messagesto disk in low memory situations. Thisis discussed in Chapter 24.

If no persistenceisrequired at all, HornetQ can also be configured not to persist any dataat al to storage as discussed
in Section 15.6.

15.1. Configuring the bindings journal

The bindings journal is configured using the following attributesin hor net g- conf i gur ati on. xm

bi ndi ngs-directory

47

Persistence

Thisisthe directory in which the bindings journal lives. The default value is dat a/ bi ndi ngs.
creat e- bi ndi ngs-dir

If thisissettot r ue then the bindingsdirectory will be automatically created at the location specified in bi ndi ngs-
directory if it does not already exist. The default valueist rue

15.2. Configuring the jms journal

The jms config shares its configuration with the bindings journal.

15.3. Configuring the message journal

The message journa is configured using the following attributesin hor net g- conf i gur ati on. xni

journal -directory
Thisisthe directory in which the message journal lives. The default valueisdat a/ j our nal .

For the best performance, we recommend the journal islocated on its own physical volume in order to minimise
disk head movement. If the journal is on a volume which is shared with other processes which might be writing
other files (e.g. bindings journal, database, or transaction coordinator) then the disk head may well be moving
rapidly between these files as it writes them, thus drastically reducing performance.

When the message journal is stored on a SAN we recommend each journa instance that is stored on the SAN
isgiven itsown LUN (logical unit).

create-journal -dir

If thisisset tot r ue then the journal directory will be automatically created at the location specified inj our nal -
directory if it does not already exist. The default valueistrue

journal -type
Valid values are Nl O or ASYNCI O.

Choosing NI 0 chooses the Java NI1O journal. Choosing Al 0 chooses the Linux asynchronous O journal. If you
choose Al 0 but are not running Linux or you do not have libaio instaled then HornetQ will detect this and
automatically fall back to using NI ©.

journal -sync-transacti ona

If thisis set to true then HornetQ will make sure all transaction data is flushed to disk on transaction boundaries
(commit, prepare and rollback). The default valueist r ue.

journal -sync-non-transacti ona

If thisis set to true then HornetQ will make sure non transactional message data (sends and acknowledgements)
are flushed to disk each time. The default value for thisistr ue.

Persistence

journal -file-size
The size of each journa file in bytes. The default value for thisis 10485760 bytes (10MiB).
journal-mn-files

The minimum number of filesthejournal will maintain. When HornetQ starts and thereisno initial message data,
HornetQ will pre-createj our nal - mi n-fi | es number of files.

Creating journal filesand filling them with padding isafairly expensive operation and we want to minimise doing
this at run-time as files get filled. By precreating files, as one is filled the journal can immediately resume with
the next one without pausing to create it.

Depending on how much data you expect your queues to contain at steady state you should tune this number of
files to match that total amount of data.

journal -max-io

Write requests are queued up before being submitted to the system for execution. This parameter controls the
maximum number of write requests that can be in the IO queue at any one time. If the queue becomes full then
writes will block until spaceisfreed up.

When using NI O, this value should always be equal to 1
When using AlO, the default should be 500.

The system maintains different defaults for this parameter depening on whether it's NI1O or A1O (default for NIO
is 1, default for AlO is 500)

Thereis alimit and the total max AlO can't be higher than what is configured at the OS level (/proc/sys/fs/aio-
max-nr) usually at 65536.

journal -buffer-tineout

Instead of flushing on every write that requires aflush, we maintain an internal buffer, and flush the entire buffer
either when it is full, or when atimeout expires, whichever is sooner. Thisis used for both NIO and AIO and
allows the system to scale better with many concurrent writes that require flushing.

This parameter controls the timeout at which the buffer will be flushed if it hasn't filled already. A1O cantypically
cope with ahigher flush rate than NI1O, so the system maintains different defaults for both NIO and AlO (default
for NI1O is 3333333 nanoseconds - 300 times per second, default for A1O is 500000 nanoseconds - ie. 2000 times
per second).

Note

By increasing the timeout, you may be able to increase system throughput at the expense of latency, the
default parameters are chosen to give a reasonable balance between throughput and latency.

journal -buffer-size

The size of the timed buffer on A1O. The default value is 490k B.

49

Persistence

* journal-conpact-nmin-files

The minimal number of files before we can consider compacting the journal. The compacting algorithm won't
start until you have at least j our nal - conpact -mi n-fil es

The default for this parameter is 10
* journal - conpact - per cent age

The threshold to start compacting. When less than this percentage is considered live data, we start compacting.
Note also that compacting won't kick in until you have at least j our nal - conpact - mi n-fi | es data files on the
journal

The default for this parameter is 30

15.4. An important note on disabling disk write cache.

Warning

Most disks contain hardware write caches. A write cache can increase the apparent performance of the disk
because writes just go into the cache and are then lazily written to the disk later.

This happens irrespective of whether you have executed a fsync() from the operating system or correctly
synced data from inside a Java program!

By default many systems ship with disk write cache enabled. This means that even after syncing from the
operating system there is no guarantee the data has actually made it to disk, so if afailure occurs, critical
data can belost.

Some more expensive disks have non volatile or battery backed write caches which won't necessarily lose
data on event of failure, but you need to test them!

If your disk does not have an expensive non volatile or battery backed cache and it's not part of some kind
of redundant array (e.g. RAID), and you value your data integrity you need to make sure disk write cache
is disabled.

Be aware that disabling disk write cache can give you a nasty shock performance wise. If you've been used
to using disks with write cache enabled in their default setting, unaware that your data integrity could be
compromised, then disabling it will give you an idea of how fast your disk can perform when acting really
reliably.

On Linux you can inspect and/or change your disk's write cache settings using the tools hdpar m (for IDE
disks) or sdpar mor sgi nf o (for SDSI/SATA disks)

On Windows you can check / change the setting by right clicking on the disk and clicking properties.

15.5. Installing AIO

The Java NIO journal gives great performance, but If you are running HornetQ using Linux Kernel 2.6 or later, we
highly recommend you use the Al 0journal for the very best persistence performance.

50

Persistence

It's not possible to use the AlO journal under other operating systems or earlier versions of the Linux kernel.

If you are running Linux kernel 2.6 or later and don't already have | i bai o installed, you can easily install it using
the following steps:

Using yum, (e.g. on Fedora or Red Hat Enterprise Linux):

yuminstall |ibaio

Using aptitude, (e.g. on Ubuntu or Debian system):

apt-get install libaio

15.6. Configuring HornetQ for Zero Persistence

In some situations, zero persistence is sometimes required for a messaging system. Configuring HornetQ to perform
zero persistenceis straightforward. Simply set the parameter per si st ence- enabl ed inhor net g- conf i gur ati on. xni
tofal se.

Please note that if you set this parameter to false, then zero persistence will occur. That means no bindings data,
message data, large message data, duplicate id caches or paging datawill be persisted.

51

16

Configuring the Transport

HornetQ has afully pluggable and highly flexible transport layer and definesits own Service Provider Interface (SPI)
to make plugging in a new transport provider relatively straightforward.

In this chapter we'll describe the concepts required for understanding HornetQ transports and where and how they're
configured.

16.1. Understanding Acceptors

One of the most important conceptsin HornetQ transportsis the acceptor. Let's dive straight in and take alook at an
acceptor defined in xml in the configuration file hor net g- confi gur ati on. xni .

<accept or s>
<acceptor name="netty">
<factory-cl ass>
org. hornetq.core.renonting.inpl.netty. NettyAcceptorFactory
</factory-cl ass>
<param key="port" val ue="5446"/>
</ accept or >
</ accept or s>

Acceptors are aways defined inside an accept ors element. There can be one or more acceptors defined in the
accept or s element. There's no upper limit to the number of acceptors per server.

Each acceptor defines away in which connections can be made to the HornetQ server.

In the above example we're defining an acceptor that uses Netty [http://jboss.org/netty] to listen for connections at
port 5446.

The accept or €lement contains a sub-element f act ory-cl ass, this element defines the factory used to create
acceptor instances. In this case we're using Netty to listen for connections so we use the Netty implementation of
an Accept or Fact ory to do this. Basically, the f act ory- cl ass element determines which pluggable transport we're
going to useto do the actual listening.

The accept or element can also be configured with zero or more par am sub-elements. Each par amelement defines
a key-value pair. These key-value pairs are used to configure the specific transport, the set of valid key-value pairs
depends on the specific transport be used and are passed straight through to the underlying transport.

Examples of key-value pairs for a particular transport would be, say, to configure the IP address to bind to, or the
port to listen at.

52

http://jboss.org/netty

Configuring the Transport

16.2. Understanding Connectors

Whereas acceptors are used on the server to define how we accept connections, connectors are used by a client to
define how it connects to a server.

Let'slook at a connector defined in our hor net g- confi gurati on. xm file:

<connect or s>
<connector name="netty">
<factory-cl ass>
org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory
</factory-cl ass>
<par am key="port" val ue="5446"/>
</ connect or >
</ connect or s>

Connectors can be defined inside a connect ors €lement. There can be one or more connectors defined in the
connect or s element. There's no upper limit to the number of connectors per server.

Y ou make ask yourself, if connectors are used by the client to make connections then why are they defined on the
server? There are a couple of reasons for this:

» Sometimes the server acts as a client itself when it connects to another server, for example when one server is
bridged to another, or when a server takes part in acluster. In this cases the server needs to know how to connect
to other servers. That's defined by connectors.

e |If you're using IMS and the server side JMS service to instantiate IMS ConnectionFactory instances and bind
them in INDI, then when creating the Hor net QConnect i onFact ory it needs to know what server that connection
factory will create connectionsto.

That's defined by the connect or -ref element in the hor net g-j ns. xm file on the server side. Let's take alook at
asnipped from ahor net g-j ms. xm file that shows a JM'S connection factory that references our netty connector
defined in our hor net g- confi guration. xm file:

<connection-factory nane="ConnectionFactory">
<connect or s>
<connector-ref connector-name="netty"/>
</ connect or s>
<entries>
<entry nane="Connecti onFactory"/>
<entry name="XAConnecti onFactory"/>
</entries>
</ connecti on-factory>

16.3. Configuring the transport directly from the client side.

How do we configure acore d i ent Sessi onFact or y with the information that it needs to connect with a server?

53

Configuring the Transport

Connectors are also used indirectly when directly configuring a core d i ent Sessi onFact ory to directly talk to a
server. Although in this case there's no need to define such a connector in the server side configuration, instead we
just create the parameters and tell the d i ent Sessi onFact ory Which connector factory to use.

Here'san exampleof creatingad i ent Sessi onFact or y which will connect directly to the acceptor we defined earlier
in this chapter, it uses the standard Netty TCP transport and will try and connect on port 5446 to localhost (default):

Map<String, Object> connectionParans = new HashMap<String, Object>();

connecti onPar anms. put (org. hornetq. core. renoting.inpl.netty. Transport Const ant s. PORT_PROP_NAVE
5446) ;

Transport Configurati on transportConfiguration =
new Transport Confi gurati on(
"org. hornetq.core.renmoting.inpl.netty. NettyConnect or Factory",
connecti onPar ans) ;

Cli ent Sessi onFactory sessionFactory = Hornet QClient.createC ientSessionFactory(transportConfiguration);

Cli ent Sessi on session = sessi onFactory. createSession(...);

etc

Similarly, if you're using JMS, you can configure the JMS connection factory directly on the client side without
having to define a connector on the server side or define a connection factory in hor net g-j ms. xmi :

Map<String, Object> connectionParans = new HashMap<String, Object>();
connecti onPar ans. put (org. hornetq. core. renoting.inpl.netty. Transport Const ants. PORT_PROP_NAME, 5446);
Transport Configurati on transport Configurati on =
new Transport Confi gurati on(
"org. hornetq.core.remoting.inpl.netty. NettyConnector Factory",
connecti onPar ans) ;
Connecti onFactory connecti onFactory = Hornet QIMSC i ent. creat eConnecti onFactory(transport Confi guration);

Connection jnsConnecti on = connecti onFactory. createConnection();

etc

16.4. Configuring the Netty transport

Out of the box, HornetQ currently uses Netty [http://www.jboss.org/netty/], a high performance low level network
library.

Our Netty transport can be configured in severa different ways; to useold (blocking) Javal O, or NIO (non-blocking),
also to use straightforward TCP sockets, SSL, or to tunnel over HTTP or HTTPS, on top of that we also provide a
servlet transport.

http://www.jboss.org/netty/

Configuring the Transport

We believe this caters for the vast majority of transport requirements.

16.4.1. Configuring Netty TCP

Netty TCP is a simple unencrypted TCP sockets based transport. Netty TCP can be configured to use old blocking
JavalO or non blocking JavaNIO. We recommend you use the JavaNIO on the server side for better scal ability with
many concurrent connections. However using Java old 1O can sometimes give you better latency than NIO when
you're not so worried about supporting many thousands of concurrent connections.

If you're running connections across an untrusted network please bear in mind thistransport is unencrypted. Y ou may
want to look at the SSL or HTTPS configurations.

With the Netty TCP transport all connections are initiated from the client side. I.e. the server does not initiate any
connections to the client. This works well with firewall policies that typically only allow connections to be initiated
in one direction.

All the valid Netty transport keys are defined in the class
org. hornetq. core.renoting.inpl.netty. Transport Constants. Most parameters can be used either with
acceptors or connectors, some only work with acceptors. The following parameters can be used to configure Netty
for simple TCP:

* use-nio. If thisistrue then Java non blocking NIO will be used. If set to f al se then old blocking Java 10 will
be used.

If you require the server to handle many concurrent connections, we highly recommend that you use non blocking
JavaNIO. JavaNIO does not maintain athread per connection so can scale to many more concurrent connections
than with old blocking 1O. If you don't require the server to handle many concurrent connections, you might get
dlightly better performance by using old (blocking) 10. The default value for this property isf al se on the server
sideand f al se on the client side.

e host. This specifies the host name or |IP address to connect to (when configuring a connector) or to listen on
(when configuring an acceptor). The default value for this property is| ocal host . When configuring acceptors,
multiple hosts or |P addresses can be specified by separating them with commas. It is aso possible to specify
0. 0. 0. 0 to accept connection from all the host's network interfaces. It's not valid to specify multiple addresses
when specifying the host for a connector; a connector makes a connection to one specific address.

Note

Don't forget to specify a host name or ip address! If you want your server able to accept connections from
other nodes you must specify ahosthame or ip address at which the acceptor will bind and listen for incoming
connections. The default islocalhost which of course is not accessible from remote nodes!

» port. This specified the port to connect to (when configuring a connector) or to listen on (when configuring an
acceptor). The default value for this property is5445.

e tcp-no-del ay. If thisis true then Nagle's agorithm [http://en.wikipedia.org/wiki/Nagle's_algorithm] will be
enabled. The default value for this property istr ue.

e tcp-send-buffer-size. Thisparameter determines the size of the TCP send buffer in bytes. The default value
for this property is 32768 bytes (32KiB).

55

http://en.wikipedia.org/wiki/Nagle's_algorithm

Configuring the Transport

TCP buffer sizes should be tuned according to the bandwidth and latency of your network. Here'sagood link that
explains the theory behind this [http://www-didc.|bl.gov/TCP-tuning/].

In summary TCP send/receive buffer sizes should be calculated as:

buf fer_size = bandwi dth * RTT.

Where bandwidth is in bytes per second and network round trip time (RTT) isin seconds. RTT can be easily
measured using the pi ng utility.

For fast networks you may want to increase the buffer sizes from the defaults.

t cp-recei ve- buf f er - si ze. This parameter determines the size of the TCP receive buffer in bytes. The default
value for this property is 32768 bytes (32KiB).

bat ch- del ay. Before writing packets to the transport, HornetQ can be configured to batch up writes for a
maximum of bat ch- del ay milliseconds. This can increase overall throughput for very small messages. It does so
at the expense of an increase in average latency for message transfer. The default value for this property iso ms.

di rect -del i ver . When a message arrives on the server and is delivered to waiting consumers, by default, the
delivery isdone on a different thread to that which the message arrived on. This gives the best overall throughput
and scalahility, especially on multi-core machines. However it also introduces some extralatency dueto the extra
context switch required. If you want the lowest latency and the possible expense of some reduction in throughput
then you can make sure di r ect - del i ver to true. The default value for this parameter ist r ue. If you are willing
to take some small extra hit on latency but want the highest throughput set this parameter to f al se.

ni o-renoting-threads. When configured to use NIO, HornetQ will, by default, use a number
of threads equal to three times the number of cores (or hyper-threads) as reported by
Runti me. get Runti me() . avai | abl eProcessors() for processing incoming packets. If you want to override this
value, you can set the number of threads by specifying this parameter. The default value for this parameter is- 1
which means use the value from Runt i me. get Runti ne() . avai | abl eProcessors() * 3.

16.4.2. Configuring Netty SSL

Netty SSL is similar to the Netty TCP transport but it provides additional security by encrypting TCP connections
using the Secure Sockets Layer SSL

Please see the examples for afull working example of using Netty SSL.

Netty SSL uses all the same properties as Netty TCP but adds the following additional properties:

ssl - enabl ed. Must bet rue to enable SSL.
key- st or e- pat h. Thisisthe path to the SSL key store on the client which holds the client certificates.
key- st or e- passwor d. Thisisthe password for the client certificate key store on the client.

trust - st or e- pat h. Thisisthe path to the trusted client certificate store on the server.

56

http://www-didc.lbl.gov/TCP-tuning/

Configuring the Transport

e trust-store-password. Thisisthe password to the trusted client certificate store on the server.
16.4.3. Configuring Netty HTTP

Netty HTTP tunnels packets over the HTTP protocol. It can be useful in scenarios where firewalls only allow HTTP
traffice to pass.

Please see the examples for afull working example of using Netty HTTP.
Netty HTTP uses the same properties as Netty TCP but adds the following additional properties:
* http-enabl ed. Must betrue to enable HTTP.

* http-client-idle-time. How long a client can be idle before sending an empty http request to keep the
connection alive

e http-client-idle-scan-period. How often, in milliseconds, to scan for idle clients

e http-response-time. How long the server can wait before sending an empty http responseto keep the connection
dive

e http-server-scan-period. How often, in milliseconds, to scan for clients needing responses

* http-requires-session-id. If truethe client will wait after the first call to receive a session id. Used the http
connector is connecting to servlet acceptor (not recommended)

16.4.4. Configuring Netty Servlet

We also provide a Netty servlet transport for use with HornetQ. The servlet transport allows HornetQ traffic to be
tunneled over HTTP to a servlet running in a servlet engine which then redirectsit to an in-VM HornetQ server.

The servlet transport differsfrom the Netty HTTP transport in that, with the HT TP transport HornetQ effectively acts
aweb server listening for HTTP traffic on, e.g. port 80 or 8080, whereas with the servlet transport HornetQ trafficis
proxied through a servlet engine which may already be serving web site or other applications. This allows HornetQ
to be used where corporate policies may only alow a single web server listening on an HTTP port, and this needs
to serve all applications including messaging.

Please see the examples for afull working example of the servlet transport being used.
To configure a servlet engine to work the Netty Servlet transport we need to do the following things:

» Deploy the servlet. Here's an example web.xml describing a web application that uses the servlet:

<?xm version="1.0" encodi ng="UTF-8"?>
<web-app xm ns="http://java. sun. comi xm / ns/j2ee" xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance'
Xsi : schemalLocati on="http://java.sun.com xm /ns/j2ee http://java. sun.com xm /ns/j2ee/ web- app_:
version="2.4">
<servl et >
<servl et - name>Hor net @Ser vl et </ ser vl et - nane>
<servl et-class>org. | boss. netty. channel . socket. http.HttpTunnelingServlet</servlet-class>
<init-paranp

57

Configuring the Transport

<par am nane>endpoi nt </ par am nane>
<par am val ue>| ocal : or g. hor net g</ par am val ue>
</init-paranr
<l oad-on- start up>1</| oad- on- st art up>
</servl et>

<servl et - mappi ng>
<servl et - name>Hor net Ser vl et </ ser vl et - nane>
<url - pattern>/ Hornet @Servl et</url -pattern>
</ servl et - mappi ng>
</ web- app>

* Wealso need to add a specia Netty invm acceptor on the server side configuration.

Here's a snippet from the hor net g- confi gurati on. xm file showing that acceptor being defined:

<accept or s>

<acceptor nane="netty-invni>
<factory-cl ass>
org. hornetq.core.renoting.inpl.netty. NettyAcceptorFactory
</factory-cl ass>
<par am key="use-invni' val ue="true"/>
<par am key="host" val ue="org. hornetq"/>
</ accept or >

</ accept or s>

« Lastly we need a connector for the client, this again will be configured in the hor net g- confi gurati on. xm file
as such:

<connect or s>

<connector name="netty-servlet">

<factory-cl ass>

org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory

</factory-cl ass>

<par am key="host" val ue="1 ocal host"/ >

<par am key="port" val ue="8080"/>

<par am key="use-servl et" val ue="true"/>

<par am key="servl et - pat h" val ue="/nmessagi ng/ Hor net QServl et "/ >
</ connect or >

</ connect or s>

Heresalist of theinit params and what they are used for

« endpoint - Thisisthe name of the netty acceptor that the serviet will forward its packetsto. Y ou can seeit matches
the name of the host param.

The servlet pattern configured intheweb. xni isthe path of the URL that is used. The connector param ser vl et - pat h
on the connector config must match this using the application context of the web app if there is one.

58

Configuring the Transport

Its also possible to use the servlet transport over SSL. simply add the following configuration to the connector:

<connect or name="netty-servlet">
<factory-cl ass>org. hornetq.core.renmoting.inpl.netty. NettyConnectorFactory</factory-class>
<par am key="host" val ue="1 ocal host"/ >
<par am key="port" val ue="8443"/>
<par am key="use-servl et" val ue="true"/>
<par am key="servl et - pat h" val ue="/ nessagi ng/ Hor net QServl et "/ >
<par am key="ssl - enabl ed" val ue="true"/>
<par am key="key-store-path" value="path to a keystoree"/>
<par am key="key- st or e- passwor d" val ue="keystore password"/>

</ connect or >

Y ou will aso have to configure the Application server to use a KeyStore. Edit theser ver. xm file that can be found
under server/ def aul t/ depl oy/ j bossweb. sar Of the Application Server installation and edit the SSL/TL S connector
configuration to look like the following:

<Connect or protocol ="HTTP/ 1. 1" SSLEnabl ed="true"
port="8443" address="${j boss. bi nd. addr ess}"
scheme="https" secure="true" clientAuth="fal se"
keystoreFil e="path to a keystore"
keyst or ePass="keyst ore password" ssl Protocol = "TLS' />

In both cases you will need to provide a keystore and password. Take alook at the servlet sl example shipped with
HornetQ for more detail.

59

17

Detecting Dead Connections

In this section we will discuss connection time-to-live (TTL) and explain how HornetQ deals with crashed clients
and clients which have exited without cleanly closing their resources.

17.1. Cleaning up Dead Connection Resources on the Server

BeforeaHornetQ client application exitsit is considered good practice that it should closeitsresourcesin acontrolled
manner, using afi nal | y block.

Here's an example of awell behaved core client application closing its session and session factory in afinally block:

d i ent Sessi onFactory sf = null;
C i ent Sessi on session = null

try
{
sf = HornetQC ient.created ientSessionFactory(...);

session = sf.createSession(...);

. do sone stuff with the session..

}
finally
{
if (session != null)
{
session. cl ose();
}
if (sf '=null)
{
sf.close();
}
}

And here's an example of awell behaved IM S client application:

Connection jnsConnection = null;

try
{

60

Detecting Dead Connections

Connecti onFactory j nsConnecti onFactory = Hornet QIMSCl i ent. creat eConnecti onFactory(...);
j msConnecti on = jmsConnecti onFactory. creat eConnection();

. do sone stuff with the connection...

}
finally

{

if (connection != null)

{

connection. cl ose();

}

Unfortunately users don't always write well behaved applications, and sometimes clientsjust crash so they don't have
a chance to clean up their resources!

If this occurs then it can leave server side resources, like sessions, hanging on the server. If these were not removed
they would cause aresource leak on the server and over time thisresult in the server running out of memory or other
resources.

We have to balance the requirement for cleaning up dead client resources with the fact that sometimes the network
between the client and the server can fail and then come back, allowing the client to reconnect. HornetQ supports
client reconnection, so we don't want to clean up "dead" server side resources too soon or thiswill prevent any client
from reconnecting, asit won't be able to find its old sessions on the server.

HornetQ makes all of this configurable. For each d i ent Sessi onFact ory we define a connection TTL. Basically,
the TTL determines how long the server will keep a connection alive in the absence of any data arriving from the
client. The client will automatically send "ping" packets periodically to prevent the server from closing it down. If
the server doesn't receive any packets on a connection for the connection TTL time, then it will automatically close
all the sessions on the server that relate to that connection.

If you'reusing JIMS, the connection TTL isdefined by the Connect i onTTL attribute on aHor net QConnect i onFact ory
instance, or if you're deploying JM S connection factory instances direct into JNDI on the server side, you can specify
it in the xml config, using the parameter connection-ttl .

The default value for connection ttl is60000ms, i.e. 1 minute. A value of - 1 for Connect i onTTL meansthe server will
never time out the connection on the server side.

If you do not wish clients to be able to specify their own connection TTL, you can override all values used by a
global value set on the server side. This can be done by specifying the connection-ttl-override attribute in the
server side configuration. The default valuefor connection-ttl -overri de is- 1 which means "do not override” (i.e.
let clients use their own values).

17.1.1. Closing core sessions or JMS connections that you have failed to close

Asprevioudly discussed, it'simportant that all core client sessions and JM S connections are always closed explicitly
inafinal Iy block when you are finished using them.

If you fail to do so, HornetQ will detect this at garbage collection time, and log awarning similar to the following in
the logs (If you are using JM S the warning will involve a IMS connection not a client session):

61

Detecting Dead Connections

[Finalizer] 20:14:43,244 WARNI NG [org. hornetq.core.client.inpl.DelegatingSession] |'mclosin

g a JdientSession you | eft open. Please nake sure you close all CientSessions explicitly before Iet

ting themgo out of scope!

[Finalizer] 20:14:43,244 WARNI NG [org. hornetq. core.client.inpl.Del egati ngSession] The sessi
on you didn't close was created here:

j ava. | ang. Excepti on

at org. hornetq.core.client.inpl.Del egatingSession. <init>(Del egati ngSessi on.java: 83)

at org. acne. your proj ect. Yourd ass (Yourd ass.java: 666)

HornetQ will then close the connection / client session for you.

Note that the log will also tell you the exact line of your user code where you created the JMS connection / client
session that you later did not close. Thiswill enable you to pinpoint the error in your code and correct it appropriately.

17.2. Detecting failure from the client side.

In the previous section we discussed how the client sends pings to the server and how "dead" connection resources
are cleaned up by the server. There's also another reason for pinging, and that's for the client to be able to detect that
the server or network has failed.

Aslong asthe client is receiving data from the server it will consider the connection to be still aive.

If the client does not receive any packetsfor cli ent - f ai | ur e- check- peri od milliseconds then it will consider the
connection failed and will either initiate failover, or call any Fai | ur eLi st ener instances (or Except i onLi st ener
instancesif you are using JIMS) depending on how it has been configured.

If you're using JMS it's defined by the 4 i ent Fai | ur eCheckPeri od attribute on a Hor net QConnect i onFact ory
instance, or if you're deploying JM S connection factory instances direct into JNDI on the server side, you can specify
itinthehornet g-j ms. xmi configuration file, using the parameter cl i ent - f ai | ur e- check- peri od.

The default value for client failure check period is 30000ms, i.e. 30 seconds. A value of - 1 means the client will
never fail the connection on the client side if no datais received from the server. Typically thisis much lower than
connection TTL to allow clients to reconnect in case of transitory failure.

17.3. Configuring Asynchronous Connection Execution

By default, packets received on the server side are executed on the remoting thread.

It is possibleinstead to use athread from athread pool to handle some packets so that the remoting thread is not tied
up for too long. However, please note that processing operations asynchronously on another thread adds a little more
latency. Please note that most short running operations are always handled on the remoting thread for performance
reasons. To enable asynchronous connection execution, set the parameter async- connect i on- execut i on- enabl ed
inhor net g- confi guration. xm totrue (default valueistrue).

62

18

Resource Manager Configuration

HornetQ has its own Resource Manager for handling the lifespan of JTA transactions. When a transaction is started
the resource manager is notified and keeps arecord of the transaction and its current state. It is possible in some cases
for a transaction to be started but then forgotten about. Maybe the client died and never came back. If this happens
then the transaction will just sit there indefinitely.

To copewith this HornetQ can, if configured, scan for old transactions and rollback any it finds. The default for thisis
3000000 milliseconds (5 minutes), i.e. any transactionsolder than 5 minutesare removed. Thistimeout can be changed
by editing thetransacti on-ti meout property inhor net g- confi guration. xm (value must bein milliseconds). The
property t r ansact i on-ti meout - scan- peri od configures how often, in milliseconds, to scan for old transactions.

Please note that HornetQ will not unilaterally rollback any XA transactions in a prepared state - this must be

heuristically rolled back via the management API if you are sure they will never be resolved by the transaction
manager.

63

19

Flow Control

Flow control is used to limit the flow of data between a client and server, or a server and another server in order to
prevent the client or server being overwhelmed with data.

19.1. Consumer Flow Control

This controls the flow of data between the server and the client as the client consumes messages. For performance
reasons clients normally buffer messages before delivering to the consumer via the receive() method or
asynchronously via a message listener. If the consumer cannot process messages as fast as they are being delivered
and stored in the internal buffer, then you could end up with a situation where messages would keep building up
possibly causing out of memory on the client if they cannot be processed in time.

19.1.1. Window-Based Flow Control

By default, HornetQ consumers buffer messages from the server in a client side buffer before the client consumes
them. This improves performance: otherwise every time the client consumes a message, HornetQ would have to go
the server to request the next message. In turn, this message would then get sent to the client side, if onewasavailable.

A network round trip would be involved for every message and considerably reduce performance.

To prevent this, HornetQ pre-fetches messages into a buffer on each consumer. The total maximum size of messages
(in bytes) that will be buffered on each consumer is determined by the consuner - wi ndow si ze parameter.

By default, the consumer - wi ndowsi ze isset to 1 MiB (1024 * 1024 bytes).

The value can be:

» -1 for an unbounded buffer

* 0 to not buffer any messages. See Section 11.1.32 for working example of a consumer with no buffering.
» >0 for abuffer with the given maximum size in bytes.

Setting the consumer window size can considerably improve performance depending on the messaging use case. As
an example, let's consider the two extremes:

Fast consumers
Fast consumers can process messages as fast as they consume them (or even faster)

To alow fast consumers, set the consuner - wi ndow si ze to -1. This will allow unbounded message buffering
on the client side.

Flow Control

Use this setting with caution: it can overflow the client memory if the consumer is not able to process messages
asfast asit receives them.

Slow consumers
Slow consumers takes significant time to process each message and it is desirable to prevent buffering messages
on the client side so that they can be delivered to another consumer instead.

Consider a situation where a queue has 2 consumers; 1 of which isvery slow. Messages are delivered in around
robin fashion to both consumers, the fast consumer processes all of its messages very quickly until its buffer is
empty. At this point there are still messages awaiting to be processed in the buffer of the slow consumer thus
preventing them being processed by the fast consumer. The fast consumer is therefore sitting idle when it could
be processing the other messages.

To alow slow consumers, set the consuner - wi ndow si ze to O (for no buffer at all). This will prevent the slow
consumer from buffering any messages on the client side. Messages will remain on the server side ready to be
consumed by other consumers.

Setting this to 0 can give deterministic distribution between multiple consumers on a queue.

Most of the consumers cannot be clearly identified as fast or sow consumers but are in-between. In that case,
setting the value of consurmer - wi ndow si ze to optimize performance depends on the messaging use case and requires
benchmarks to find the optimal value, but avalue of IMiB isfinein most cases.

19.1.1.1. Using Core API

If HornetQ Core API is used, the consumer window size is specified by
d i ent Sessi onFact ory. set Consuner W ndowSi ze() method and some of the d i ent Sessi on. cr eat eConsumner ()
methods.

19.1.1.2. Using JMS

if INDI isused to look up the connection factory, the consumer window size is configured in hor net g-j ms. xni :

<connection-factory nane="ConnectionFactory">
<connect or s>
<connector-ref connector-nanme="netty-connector"/>
</ connect or s>
<entries>
<entry name="Connecti onFactory"/>
</entries>

<l-- Set the consunmer w ndow size to O to have *no* buffer on the client side -->
<consuner - W ndow si ze>0</ consuner - Wi ndow- si ze>
</ connection-factory>

If the connection factory is directly instantiated, the consumer window size is specified by
Hor net QConnect i onFact ory. set Consuner W ndowSi ze() method.

Please see Section 11.1.32 for an example which shows how to configure HornetQ to prevent consumer buffering
when dealing with slow consumers.

65

Flow Control

19.1.2. Rate limited flow control

Itisalso possible to control the rate at which a consumer can consume messages. Thisisaform of throttling and can
be used to make sure that a consumer never consumes messages at a rate faster than the rate specified.

Therate must be apositive integer to enable this functionality and is the maximum desired message consumption rate
specified in units of messages per second. Setting thisto - 1 disablesrate limited flow control. The default valueis- 1.

Please see Section 11.1.10 for aworking example of limiting consumer rate.
19.1.2.1. Using Core API

If the HornetQ core API is being used the rate can be set viathe d i ent Sessi onFact ory. set Consuner MaxRat e(i nt
consuner MaxRat) method or alternatively via some of the d i ent Sessi on. cr eat eConsurrer () methods.

19.1.2.2. Using JMS
If INDI is used to look up the connection factory, the max rate can be configured in hor net g-j ns. xm :

<connection-factory nanme="Connecti onFactory">
<connect or s>
<connector-ref connector-nanme="netty-connector"/>
</ connect or s>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<I-- W |limt consuners created on this connection factory to consune nessages
at a maxi numrate
of 10 messages per sec -->
<consumer - max- r at e>10</ consuner - max- r at e>
</ connecti on-factory>

If the connection factory is directly instantiated, the max rate size can be set via the
Hor net QConnect i onFact ory. set Consumer MaxRat e(i nt consuner MaxRat e) method.

Note

Rate limited flow control can be used in conjunction with window based flow control. Rate limited flow
control only effects how many messages a client can consume in a second and not how many messages are
inits buffer. So if you had a slow rate limit and a high window based limit the clientsinternal buffer would
soon fill up with messages.

Please see Section 11.1.10 for an example which shows how to configure HornetQ to prevent consumer buffering
when dealing with slow consumers.

19.2. Producer flow control
HornetQ also can limit the amount of data sent from a client to a server to prevent the server being overwhelmed.

19.2.1. Window based flow control

66

Flow Control

In asimilar way to consumer window based flow control, HornetQ producers, by default, can only send messages
to an address as long as they have sufficient credits to do so. The amount of credits required to send a message is
given by the size of the message.

As producers run low on credits they request more from the server, when the server sends them more credits they
can send more messages.

The amount of credits a producer requests in one go is known as the window size.

The window size therefore determines the amount of bytes that can be in-flight at any one time before more need to
be requested - this prevents the remoting connection from getting overloaded.

19.2.1.1. Using Core API

If the HornetQ core APl is being used, window size <can be st via the
d i ent Sessi onFact ory. set Producer W ndowSi ze(i nt producer W ndowSi ze) method.

19.2.1.2. Using JMS

If INDI is used to look up the connection factory, the producer window size can be configured in hor net g-j ms. xm :

<connection-factory nane="Connecti onFactory">
<connect or s>
<connector-ref connector-nanme="netty-connector"/>
</ connect or s>
<entries>
<entry name="Connecti onFactory"/>
</entries>
<pr oducer - wi ndow si ze>10</ pr oducer - Wi ndow- si ze>
</ connecti on-factory>

If the connection factory is directly instantiated, the producer window size can be set via the
Hor net QConnect i onFact ory. set Producer W ndowSi ze(i nt producer W ndowSi ze) method.

19.2.1.3. Blocking producer window based flow control

Normally the server will always give the same number of credits as have been requested. However, it isaso possible
to set a maximum size on any address, and the server will never send more credits than could cause the address's
upper memory limit to be exceeded.

For example, if | have aJM S queue called "myqueue”, | could set the maximum memory sizeto 10MiB, and the the
server will control the number of credits sent to any producers which are sending any messages to myqueue such that
the total messages in the queue never exceeds 10MiB.

When the address gets full, producers will block on the client side until more space frees up on the address, i.e. until
messages are consumed from the queue thus freeing up space for more messages to be sent.

We call this blocking producer flow control, and it's an efficient way to prevent the server running out of memory
due to producers sending more messages than can be handled at any time.

It is an aternative approach to paging, which does not block producers but instead pages messages to storage.

67

Flow Control

To configure an address with a maximum size and tell the server that you want to block producers for this address
if it becomesfull, you need to define an AddressSettings (Section 25.3) block for the address and specify max- si ze-
byt es and addr ess-ful | - pol i cy

The address block applies to al queues registered to that address. |.e. the total memory for all queues bound to that
address will not exceed max- si ze- byt es. In the case of IM S topics this means the total memory of all subscriptions
in the topic won't exceed max-size-bytes.

Here's an example:

<addr ess-settings>
<address-setting match="j ns. queue. exanpl eQueue" >
<max- si ze- byt es>100000</ max- si ze- byt es>
<address-full -policy>BLOCK</ addr ess-full -policy>
</ addr ess-setting>
</ addr ess-settings>

The above example would set the max size of the IM S queue "exampleQueue” to be 100000 bytes and would block
any producers sending to that address to prevent that max size being exceeded.

Note the policy must be set to BLOcK to enable blocking producer flow control.
Note

Notethat in the default configuration all addresses are set to block producers after 10 MiB of message datais
in the address. This means you cannot send more than 10MiB of message data to an address without it being
consumed before the producers will be blocked. If you do not want this behaviour increase the nax- si ze-

byt es parameter or change the address full message policy.

19.2.2. Rate limited flow control

HornetQ also allowstherate aproducer can emit messageto belimited, in units of messages per second. By specifying
such arate, HornetQ will ensure that producer never produces messages at a rate higher than that specified.

Therate must be a positive integer to enable this functionality and isthe maximum desired message consumption rate
specified in units of messages per second. Setting thisto - 1 disables rate limited flow control. The default valueis- 1.

Please see the Section 11.1.36 for aworking example of limiting producer rate.
19.2.2.1. Using Core API

If the HornetQ core API is being used the rate can be set viathe d i ent Sessi onFact ory. set Pr oducer MaxRat e(i nt
consurrer MaxRat) method or alternatively via some of the d i ent Sessi on. cr eat ePr oducer () methods.

19.2.2.2. Using JMS

If INDI is used to look up the connection factory, the max rate can be configured in hor net g-j ms. xm :

<connection-factory nane="Connecti onFactory">
<connect or s>

68

Flow Control

<connector-ref connector-nanme="netty-connector"/>
</ connect or s>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<I-- W |limt producers created on this connection factory to produce nessages
at a maxi mumrate
of 10 nmessages per sec -->
<pr oducer - max-r at e>10</ pr oducer - max- r at e>
</ connection-factory>

If the connection factory is directly instantiated, the max rate sSize can be set via the
Hor net QConnect i onFact ory. set Producer MaxRat e(i nt consumer MaxRat e) method.

69

20

Guarantees of sends and commits

20.1. Guarantees of Transaction Completion

When committing or rolling back a transaction with HornetQ, the request to commit or rollback is sent to the server,
and the call will block on the client side until aresponse has been received from the server that the commit or rollback
was executed.

When the commit or rollback is received on the server, it will be committed to the journal, and depending on the
value of the parameter j our nal - sync-transacti onal the server will ensure that the commit or rollback is durably
persisted to storage before sending the response back to the client. If this parameter hasthe valuef al se then commit
or rollback may not actually get persisted to storage until some time after the response has been sent to the client.
In event of server failure this may mean the commit or rollback never gets persisted to storage. The default value of
this parameter istrue so the client can be sure all transaction commits or rollbacks have been persisted to storage
by the time the call to commit or rollback returns.

Setting this parameter to f al se can improve performance at the expense of some loss of transaction durability.

This parameter is set in hor net g- conf i gur ati on. xn

20.2. Guarantees of Non Transactional Message Sends

If you are sending messages to aserver using a non transacted session, HornetQ can be configured to block the call to
send until the message has definitely reached the server, and a response has been sent back to the client. This can be
configured individually for durable and non-durable messages, and is determined by the following two parameters:

e Bl ockOnDur abl eSend. If thisisset to t r ue then all calls to send for durable messages on nhon transacted sessions
will block until the message has reached the server, and a response has been sent back. The default valueist r ue.

e Bl ockOnNonDur abl eSend. If thisisset to t r ue then all calls to send for non-durable messages on non transacted
sessionswill block until the message has reached the server, and aresponse has been sent back. The default value
isfal se.

Setting block on sendstot r ue can reduce performance since each send requires a network round trip before the next
send can be performed. This means the performance of sending messages will be limited by the network round trip
time (RTT) of your network, rather than the bandwidth of your network. For better performance we recommend either
batching many messages sends together in atransaction since with atransactional session, only the commit / rollback
blocks not every send, or, using HornetQ's advanced asynchronous send acknowledgements feature described in
Section 20.4.

70

Guarantees of sends and commits

If you are using JMS and you're using the JM S service on the server to load your JMS connection factory instances
into JNDI then these parameters can be configured in hor net g- j ms. xn using the elementsbl ock- on- dur abl e- send
and bl ock- on- non- dur abl e- send. If you're using JM S but not using JNDI then you can set these values directly on
the Hor net QConnect i onFact or y instance using the appropriate setter methods.

If you're using core you can set these values directly on the d i ent Sessi onFact ory instance using the appropriate
setter methods.

When the server receives amessage sent from anon transactional session, and that messageis durable and the message
is routed to at least one durable queue, then the server will persist the message in permanent storage. If the journal
parameter j our nal - sync- non-transacti onal iSSet to true the server will not send a response back to the client
until the message has been persisted and the server has aguarantee that the data has been persisted to disk. The default
value for this parameter ist r ue.

20.3. Guarantees of Non Transactional Acknowledgements

If you are acknowledging the delivery of amessage at the client side using a non transacted session, HornetQ can be
configured to block the call to acknowledge until the acknowledge has definitely reached the server, and aresponse
has been sent back to the client. This is configured with the parameter Bl ockOnAcknow edge. If thisis set to true
then all callsto acknowledge on non transacted sessionswill block until the acknowledge has reached the server, and
a response has been sent back. You might want to set this to t rue if you want to implement a strict at most once
delivery policy. The default valueist al se

20.4. Asynchronous Send Acknowledgements

If you are using a non transacted session but want a guarantee that every message sent to the server has reached it,
then, as discussed in Section 20.2, you can configure HornetQ to block the call to send until the server has received
the message, persisted it and sent back a response. This works well but has a severe performance penalty - each call
to send needsto block for at least the time of anetwork round trip (RTT) - the performance of sending isthus limited
by the latency of the network, not limited by the network bandwidth.

Let'sdo alittle bit of mathsto see how severethat is. We'll consider a standard 1Gib ethernet network with a network
round trip between the server and the client of 0.25 ms.

With a RTT of 0.25 ms, the client can send at most 1000/ 0.25 = 4000 messages per second if it blocks on each
message send.

If each message is < 1500 bytes and a standard 1500 bytes MTU size is used on the network, then a 1GiB network
has a theoretical upper limit of (1024 * 1024 * 1024 / 8) / 1500 = 89478 messages per second if messages are sent
without blocking! These figures aren't an exact science but you can clearly see that being limited by network RTT
can have serious effect on performance.

To remedy this, HornetQ provides an advanced new feature called asynchronous send acknowl edgements. With this
feature, HornetQ can be configured to send messages without blocking in one direction and asynchronously getting
acknowledgement from the server that the messages were received in a separate stream. By de-coupling the send
from the acknowledgement of the send, the system is not limited by the network RTT, but is limited by the network
bandwidth. Consequently better throughput can be achieved than is possible using a blocking approach, while at the
same time having absol ute guarantees that messages have successfully reached the server.

71

Guarantees of sends and commits

The window size for send acknowledgements is determined by the confirmation-window-size parameter on the
connection factory or client session factory. Please see Chapter 34 for more info on this.

20.4.1. Asynchronous Send Acknowledgements

To use the feature using the core API, you implement the interface
org. hornet g. api . core. cl i ent. SendAcknow edgenent Handl er and set ahandler instance on your C i ent Sessi on.

Then, you just send messages as normal using your C i ent Sessi on, and as messages reach the server, the server will
send back an acknowledgement of the send asynchronously, and some time later you are informed at the client side
by HornetQ calling your handler's sendAcknow edged(d i ent Message nessage) method, passing in areference to
the message that was sent.

To enable asynchronous send acknowledgements you must make sureconf i r mat i on- wi ndow si ze issetto apositive
integer value, e.g. 10MiB

Please see Section 11.1.45 for afull working example.

72

21

Message Redelivery and Undelivered Messages

Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them is rolled back). Such
a message goes back to its queue ready to be redelivered. However, this means it is possible for a message to be
delivered again and again without any success and remain in the queue, clogging the system.

There are 2 ways to deal with these undelivered messages:
» Delayed redelivery.

It is possible to delay messages redelivery to let the client some time to recover from transient failures and not
overload its network or CPU resources

* Dead Letter Address.

It is also possible to configure a dead letter address so that after a specified number of unsuccessful deliveries,
messages are removed from the queue and will not be delivered again

Both options can be combined for maximum flexibility.

21.1. Delayed Redelivery

Delaying redelivery can often be useful in the casethat clientsregularly fail or rollback. Without adelayed redelivery,
the system can get into a "thrashing" state, with delivery being attempted, the client rolling back, and delivery being
re-attempted ad infinitum in quick succession, consuming valuable CPU and network resources.

21.1.1. Configuring Delayed Redelivery

Delayed redelivery is defined in the address-setting configuration:

<l-- delay redelivery of nessages for 5s -->

<address-setting match="j ns. queue. exanpl eQueue" >
<redel i very- del ay>5000</r edel i very- del ay>

</ addr ess-setting>

If aredelivery-del ay isspecified, HornetQ will wait this delay before redelivering the messages
By default, thereisno redelivery delay (redel i ver y- del ayis set to 0).

Address wildcards can be used to configure redelivery delay for aset of addresses (see Chapter 13), so you don't have
to specify redelivery delay individually for each address.

73

Message Redelivery and Undelivered M essages

21.1.2. Example

See Section 11.1.12 for an example which shows how delayed redelivery is configured and used with IMS.

21.2. Dead Letter Addresses

To prevent aclient infinitely receiving the same undelivered message (regardless of what is causing the unsuccessful
deliveries), messaging systems define dead letter addresses: after a specified unsuccessful delivery attempts, the
message is removed from the queue and send instead to a dead |etter address.

Any such messages can then be diverted to queue(s) where they can later be perused by the system administrator
for action to be taken.

HornetQ's addresses can be assigned a dead letter address. Once the messages have be unsuccessfully delivered for
a given number of attempts, they are removed from the queue and sent to the dead letter address. These dead letter
messages can later be consumed for further inspection.

21.2.1. Configuring Dead Letter Addresses

Dead letter address is defined in the address-setting configuration:

<l-- wundelivered nessages in exanpl eQueue will be sent to the dead |letter address
deadLetter Queue after 3 unsuccessful delivery attenpts

-->

<address-setting match="j ns. queue. exanpl eQueue" >
<dead-| etter-address>j ns. queue. deadLet t er Queue</ dead- | et t er - addr ess>
<max- del i very- att enpt s>3</ max-del i very-attenpt s>

</ addr ess-setting>

If a dead-letter-address iS not specified, messages will removed after max- del i very-attenpts unsuccessful
attempts.

By default, messages are redelivered 10 times at the maximum. Set max- del i very-attenpts to -1 for infinite
redeliveries.

For example, adead | etter can be set globally for aset of matching addresses and you can set max- del i very-at t enpt s
to -1 for a specific address setting to allow infinite redeliveries only for this address.

Address wildcards can be used to configure dead letter settings for a set of addresses (see Chapter 13).
21.2.2. Dead Letter Properties

Dead letter messages which are consumed from a dead |etter address have the following property:

* _HQ ORI G_ADDRESS

a String property containing the original address of the dead letter message

21.2.3. Example

74

Message Redelivery and Undelivered M essages

See Section 11.1.11 for an example which shows how dead letter is configured and used with IMS.

21.3. Delivery Count Persistence

In normal use, HornetQ does not update delivery count persistently until a message is rolled back (i.e. the delivery
count is not updated before the message is delivered to the consumer). In most messaging use cases, the messages
are consumed, acknowledged and forgotten as soon asthey are consumed. In these cases, updating the delivery count
persistently before delivering the message would add an extra persistent step for each message delivered, implying
a significant performance penalty.

However, if the delivery count is not updated persistently before the message delivery happens, in the event of a
server crash, messages might have been delivered but that will not have been reflected in the delivery count. During
the recovery phase, the server will not have knowledge of that and will deliver the message with r edel i ver ed Set
tofal se whileit should bet r ue.

Asthis behavior breaks strict IMS semantics, HornetQ allows to persist delivery count before message delivery but
disabled it by default for performance implications.

To enableit, set persi st - del i very-count - bef or e-del i very tOtrue inhornet g- confi gurati on. xn :

<persi st-delivery-count-before-delivery>true</persist-delivery-count-before-delivery>

75

22

Message Expiry

Messages can be set with an optional time to live when sending them.

HornetQ will not deliver amessage to aconsumer after it'stimeto live has been exceeded. If the message hasn't been

delivered by the time that time to live is reached the server can discard it.

HornetQ's addresses can be assigned a expiry address so that, when messages are expired, they are removed from
the queue and sent to the expiry address. Many different queues can be bound to an expiry address. These expired

messages can later be consumed for further inspection.

22.1. Message Expiry

Using HornetQ Core API, you can set an expiration time directly on the message:

/1 message will expire in 5000ns from now
nmessage. set Expirati on(SystemcurrentTineMI1is() + 5000);

JM S MessageProducer allows to set a TimeToLive for the messages it sent:

/1l messages sent by this producer will be retained for 5s (5000ns) before expiration
producer. set Ti meToLi ve(5000) ;

Expired messages which are consumed from an expiry address have the following properties:
* _HQ ORI G_ADDRESS

a String property containing the original address of the expired message
* _HQ ACTUAL_EXPI RY

alLong property containing the actual expiration time of the expired message

22.2. Configuring Expiry Addresses

Expiry address are defined in the address-setting configuration:

<I-- expired messages in exanpleQueue will be sent to the expiry address expiryQeue --

76

Message Expiry

<address-setting match="j ns. queue. exanpl eQueue" >
<expi ry-addr ess>j ns. queue. expi r yQueue</ expi ry- addr ess>
</ addr ess-setting>

If messages are expired and no expiry addressis specified, messages are simply removed from the queue and dropped.
Address wildcards can be used to configure expiry address for a set of addresses (see Chapter 13).

22.3. Configuring The Expiry Reaper Thread

A reaper thread will periodically inspect the queues to check if messages have expired.
The reaper thread can be configured with the following propertiesin hor net g- conf i gur ati on. xm
®* nmessage- expiry-scan-period

How often the queues will be scanned to detect expired messages (in milliseconds, default is 30000ms, set to - 1
to disable the reaper thread)

* message-expiry-thread-priority

The reaper thread priority (it must be between 0 and 9, 9 being the highest priority, default is 3)

22.4. Example

See Section 11.1.28 for an example which shows how message expiry is configured and used with IMS.

7

23

Large Messages

HornetQ supports sending and receiving of huge messages, even when the client and server are running with limited
memory. The only realistic limit to the size of a message that can be sent or consumed is the amount of disk space
you have available. We have tested sending and consuming messages up to 8 GiB in size with a client and server
running in just 50MiB of RAM!

To send alarge message, the user can set an | nput St r eamon amessage body, and when that messageis sent, HornetQ
will read the | nput St ream A Fi | el nput St r eamcould be used for example to send a huge message from a huge file
on disk.

Asthel nput St reamisread the datais sent to the server as a stream of fragments. The server persists these fragments
to disk asit receives them and when the time comes to deliver them to aconsumer they are read back of the disk, also
infragmentsand sent down thewire. When the consumer receivesalarge messageit initially receivesjust the message
with an empty body, it can then set an Qut put St r eamon the message to stream the huge message body to afile on
disk or elsewhere. At no time is the entire message body stored fully in memory, either on the client or the server.

23.1. Configuring the server

Large messages are stored on adisk directory on the server side, as configured on the main configuration file.
The configuration property | ar ge- nessages- di r ect or y specifies where large messages are stored.

<confi guration xm ns="urn: hornetqg"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="urn: hornetq /schena/ hornet g- confi gurati on. xsd" >

<l ar ge- nessage- di rect ory>/ dat a/ | ar ge- messages</ | ar ge- nessage-di rect ory>

</ configuration

By default the large message directory isdat a/ | ar genessages

For the best performance we recommend large messages directory is stored on a different physical volume to the
message journal or paging directory.

23.2. Setting the limits

78

Large Messages

Any message larger than a certain size is considered a large message. Large messages will be split up and sent in
fragments. Thisis determined by the parameter ni n- | ar ge- nessage- si ze

The default value is 100KiB.
23.2.1. Using Core API

If the HornetQ Core APl is wused, the minima large message size is gpecified by

d i ent Sessi onFact ory. set M nLar geMessageSi ze.

C i ent Sessi onFactory factory =

Hor net QCl i ent . creat ed i ent Sessi onFact or y(new

Transport Confi gurati on(NettyConnector Factory. cl ass. get Nane()), null);
factory. set M nLar geMessageSi ze(25 * 1024);

Section 16.3 will provide more information on how to instantiate the session factory.
23.2.2. Using JMS

If INDI is used to look up the connection factory, the minimum large message size is specified in hor net g- j ms. xn

<connection-factory nane="Connecti onFactory">
<connect or s>

<connector-ref connector-name="netty"/>
</ connect or s>
<entries>

<entry name="Connecti onFactory"/>

<entry nane="XAConnecti onFactory"/>
</entries>

<m n-| ar ge- nessage- si ze>250000</ m n- | ar ge- nessage- si ze>
</ connection-factory>

If the connection factory is being instantiated directly, the minimum large message size is specified by
Hor net QConnect i onFact ory. set M nLar geMessageSi ze.

23.3. Streaming large messages

HornetQ supports setting the body of messages using input and output streams (j ava. | ang. i 0)
These streams are then used directly for sending (input streams) and receiving (output streams) messages.

When receiving messages there are 2 ways to deal with the output stream; you may choose to block while the
output stream is recovered using the method d i ent Message. saveQut put St reamor aternatively using the method
d i ent Message. set Qut put st r eamwhich will asynchronously write the message to the stream. If you choose the
latter the consumer must be kept alive until the message has been fully received.

Y ou can use any kind of stream you like. The most common use case isto send files stored in your disk, but you could
also send things like JDBC Blobs, Socket | nput St r eam things you recovered from HTTPRequest s efc. Anything as
long asit implementsj ava. i o. | nput St reamfor sending messages or j ava. i 0. Qut put St r eamfor receiving them.

79

Large Messages

23.3.1. Streaming over Core API

The following table shows a list of methods available at d i ent Message which are also available through JMS by

the use of object properties.

Table 23.1. org.hornetq.api.core.client.ClientM essage API

Name

Description

JM S Equivalent Property

setBodyl nputStream(I nputStream)

setOutputStream(OutputStream)

saveQutputStream(OutputStream)

Set the InputStream used to read a
message body when sending it.

Set the OutputStream that will
receive the body of amessage. This
method does not block.

Save the body of the message to the
Qut put Stream It will block until
the entire content is transferred to
the aut put Stream

JMS HQ_InputStream

JMS HQ_ OutputStream

JMS HQ SaveStream

To set the output stream when receiving a core message:

d i ent Message nmsg = consuner.receive(...);

Il This will

bl ock here until the streamwas transferred

nsg. saveQut put St r ean(soneCut put Strean) ;

d i ent Message nmsg2 = consuner.receive(...);

[l This wll

not wait the transfer to finish

neg. set Qut put St r ean(somreQ her Qut put St ream ;

Set the input stream when sending a core message:

C i ent Message nmsg = sessi on. creat eMessage();
nsg. set | nput St r eam(dat al nput St r ean) ;

23.3.2. Streaming over JMS

When using IM S, HornetQ maps the streaming methods on the core API (see Table 23.1) by setting object properties.
Y ou can use the method Message. set Qbj ect Proper t y t0 et the input and output streams.

80

Large Messages

The | nput St r eamcan be defined through the IM S Object Property IMS HQ_InputStream on messages being sent:

Byt esMessage nessage = session. cr eat eByt esMessage();
FilelnputStream fil el nput Stream = new Fi |l el nput Strean(fil el nput);
Buf f er edl nput St r eam buf f er edl nput = new Buf feredl nput Strean(fil el nput Strean);

nmessage. set oj ect Property("JMS_HQ I nput Streant, bufferedlnput);

sonePr oducer . send(nessage) ;

The Qut put St r eamcan be set through the IMS Object Property IMS HQ_SaveStream on messages being received
in ablocking way.

Byt esMessage nessageRecei ved = (Byt esMessage) nessageConsuner. recei ve(120000);
File outputFile = new Fil e("huge_nessage_recei ved. dat");

Fi |l eQut put Stream fil eCut put Stream = new Fi | eQut put St reanm(out put Fil e);

Buf f er edQut put St r eam buf f er edQut put = new Buf f er edQut put St rean(fi | eQut put St rean ;

/1 This will block until the entire content is saved on disk
nmessageRecei ved. set Cbj ect Property("JMS_HQ SaveStreant, bufferedQutput);

Setting the cut put St reamcould also be done in a non blocking way using the property IMS _HQ_OutputStream.

/1 This won't wait the streamto finish. You need to keep the consuner active.
nmessageRecei ved. set Obj ect Property("JMS_HQ Qut put Streant', bufferedQut put);

Note

When using JMS, Streaming large messages are only supported on St r eamvessage and Byt esMessage.

23.4. Streaming Alternative

If you choose not to use the | nput St reamor Qut put St r eam capability of HornetQ Y ou could still access the data
directly in an aternative fashion.

On the Core API just get the bytes of the body as you normally would.
Cl i ent Message nmsg = consuner.receive();
byte[] bytes = new byte[1024];

for (int i =0 ; i < neg.getBodySize(); i += bytes.|ength)
{

nsg. get Body() . r eadByt es(byt es) ;

81

Large Messages

/1 \Whatever you want to do with the bytes

If using IMS API, Byt esMessage and St r eamMessage aso supportsit transparently.

Byt esMessage rm = (Byt esMessage) cons. recei ve(10000) ;
byte data[] = new byte[1024];

for (int i = 0; i <rmgetBodyLength(); i += 1024)
{

int nunber O Bytes = rmreadBytes(data);

/1 Do whatever you want with the data

23.5. Cache Large Messages on client

Large messages are transferred by streaming from server to client. The message is broken into smaller packets and
as the message is read more packets will be received. Because of that the body of the large message can be read
only once, and by conseguence a received message can be sent to another producer only once. The IM S Bridge for
instance won't be able to resend alarge message in case of failure

To solve this problem, you can enable the property cache- | ar ge- nessage- cl i ent on the connection factory. If you
enabl e this property the client consumer will create a temporary file to hold the large message content, so it would
be possible to resend large messages.

Note
Use this option on the connection factory used by the IMS Bridge if the IMS Bridge is being used for large
messages.

23.6. Large message example

Please see Section 11.1.22 for an example which shows how large message is configured and used with IMS.

82

24

Paging

HornetQ transparently supports huge queues containing millions of messages whilethe server isrunning with limited
memory.

Insuch asituationit'snot possibleto storeall of the queuesin memory at any onetime, so HornetQ transparently pages
messages into and out of memory as they are needed, thus allowing massive queues with alow memory footprint.

HornetQ will start paging messages to disk, when the size of all messages in memory for an address exceeds a
configured maximum size.

By default, HornetQ does not page messages - this must be explicitly configured to activate it.
24.1. Page Files

Messages are stored per address on the file system. Each address has an individual folder where messages are stored
in multiple files (page files). Each file will contain messages up to amax configured size (page- si ze- byt es). When
reading page-files all messages on the page-file are read, routed and the file is deleted as soon as the messages are
recovered.

24.2. Configuration

Y ou can configure the location of the paging folder

Global paging parameters are specified on the main configuration file (hor net g- confi gur ati on. xni).

<configuration xm ns="urn: hornetq"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="urn: hornet q / schema/ hor net gq- confi gurati on. xsd" >

<pagi ng- di r ect or y>/ somewher e/ pagi ng- di r ect or y</ pagi ng- di rect ory>

83

Paging

Table 24.1. Paging Configuration Parameters

Property Name

Description

Default

pagi ng-directory

24.3. Paging Mode

Where page files are stored.
HornetQ will create one folder for
each address being paged under this
configured location.

data/paging

As soon as messages delivered to an address exceed the configured size, that address alone goes into page mode.

Note

Paging is done individually per address. If you configure a max-size-bytes for an address, that means each
matching address will have a maximum size that you specified. It DOES NOT mean that the total overall
size of all matching addressesis limited to max-size-bytes.

24.3.1. Configuration

Configuration is done at the address settings, done at the main configuration file (hor net g- conf i gurati on. xm).

<addr ess-settings>

<address-setting natch="j ns. soneaddr ess" >
<max- si ze- byt es>104857600</ max- si ze- byt es>
<page- si ze- byt es>10485760</ page- si ze- byt es>
<address-ful |l - pol i cy>PAGE</ addr ess-ful | - policy>

</ addr ess-setting>
</ addr ess-settings>

Thisisthelist of available parameters on the address settings.

Paging

Table 24.2. Paging Address Settings

Property Name Description Default

max- si ze- byt es What'sthe max memory the address | -1 (disabled)
could have before entering on page
mode.

page- si ze- byt es The size of each page file used on | 10MiB (10 * 1024 * 1024 bytes)
the paging system

address-ful | -policy This must be set to PAGE for | PAGE

paging to enable. If the value is
PAGE then further messages will
be paged to disk. If the value is
DROP then further messages will
be silently dropped. If the value
is BLOCK then client message
producers will block when they try
and send further messages.

24.4. Dropping messages

Instead of paging messages when the max size is reached, an address can also be configured to just drop messages
when the addressis full.

To dothisjust set the addr ess-ful | - pol i cy to DROP in the address settings

24.5. Blocking producers

Instead of paging messages when the max size is reached, an address can also be configured to block producers from
sending further messages when the address is full, thus preventing the memory being exhausted on the server.

When memory is freed up on the server, producers will automatically unblock and be able to continue sending.
To do thisjust set the addr ess-ful | - pol i cy t0 BLOCK in the address settings

In the default configuration, all addresses are configured to block producers after 10 MiB of data arein the address.

24.6. Caution with Addresses with Multiple Queues

When a message is routed to an address that has multiple queues bound to it, e.g. a IMS subscription, there is only
1 copy of the message in memory. Each queue only deals with a reference to this. Because of this the memory is
only freed up once all queues referencing the message have delivered it. Thismeansthat if not all queues deliver the
message we can end up in a state where messages are not delivered.

For example:

e Anaddress has 10 queues

85

Paging

One of the queues does not deliver its messages (maybe because of a slow consumer).
Messages continually arrive at the address and paging is started.

The other 9 queues are empty even though messages have been sent.

In this example we have to wait until the last queue has delivered some of its messages before we depage and the
other queues finally receive some more messages.

24.7. Paging and message selectors

Note

Please note that message selectors will only operate on messages in memory. If you have alarge amount of
messages paged to disk and a selector that only matches some of the paged messages, then those messages
won't be consumed until the messagesin memory have been consumed. HornetQ does not scan through page
files on disk to locate matching messages. To do this efficiently would mean implementing and managing
indexes amongst other things. Effectively we would be writing arelational database! Thisis not the primary
role of amessaging system. If you find yourself using selectors which only select small subsets of messages
invery large queues which aretoo largeto fit in memory at any onetime, then you probably want arelational
database not a messaging system - you're effectively executing queries over tables.

24.8. Paging and browsers

Note

Please note that message browsersonly operate over messagesin memory. They do not operate over messages
paged to disk. Messages are paged to disk before they are routed to any queues, so when they are paged, they
are not in any queues, so will not appear when browsing any gueues.

24.9. Paging and unacknowledged messages

Note

Please note that until messages are acknowledged they are still in memory on the server, so they contribute
to the size of messages on a particular address. If messages are paged to disk for an address, and are being
consumed, they will be depaged from disk when enough memory has been freed up in that address after
messages have been consumed and acknowledged. However if messages are not acknowledged then more
messages will not be depaged since there is no free space in memory. In this case message consumption can
appear to hang. If not acknowledging explictly messages are acknowledged according to the ack- bat ch-
si ze setting. Be careful not to set your paging max size to afigure lower than ack-batch-size or your system
may appear to hang!

24.10. Example

See Section 11.1.34 for an example which shows how to use paging with HornetQ.

86

25

Queue Attributes

Queue attributes can be set in one of two ways. Either by configuring them using the configuration file or by using
the core API. This chapter will explain how to configure each attribute and what effect the attribute has.

25.1. Predefined Queues

Queues can be predefined via configuration at acore level or at a IMS level. Firstly letslook at a IMS level.
The following shows a queue predefined in the hor net g- j ms. xm configuration file.

<queue nane="sel ect or Queue" >
<entry nane="/queue/ sel ect or Queue"/ >
<sel ector string="color="red "/>
<dur abl e>t r ue</ dur abl e>

</ queue>

This name attribute of queue defines the name of the queue. When we do this at a jms level we follow a naming
convention so the actual name of the core queue will bej ns. queue. sel ect or Queue.

The entry element configures the name that will be used to bind the queue to INDI. Thisisamandatory element and
the queue can contain multiple of these to bind the same queue to different names.

The selector element defines what IM S message selector the predefined queue will have. Only messages that match
the selector will be added to the queue. Thisis an optional element with a default of null when omitted.

Thedurabl e element specifieswhether the queuewill be persisted. Thisagainisoptional and defaultstotrueif omitted.

Secondly a queue can be predefined at a core level in the hor net g- configuration. xm file. The following is an
example.

<queues>
<queue nanme="j ms. queue. sel ect or Queue" >
<addr ess>j ns. queue. sel ect or Queue</ addr ess>
<filter string="color="red "/>
<dur abl e>t r ue</ dur abl e>
</ queue>
</ queues>

Thisisvery similar to the IMS configuration, with 3 real differences which are.
1. The name attribute of queue isthe actual name used for the queue with no naming convention asin JMS.

2. The address element defines what address is used for routing messages.

87

Queue Attributes

3. Thereisno entry element.

4. Thefilter usesthe Corefilter syntax (described in Chapter 14), not the IM S selector syntax.

25.2. Using the API

Queues can also be created using the core API or the management API.

For the core API, queues can be created via the or g. hor net q. api . core. cli ent. d i ent Sessi on interface. There
are multiple cr eat eQueue methods that support setting all of the previously mentioned attributes. There is one extra
attribute that can be set via this APl which ist enpor ary. setting this to true means that the queue will be deleted
once the session is disconnected.

Take alook at Chapter 30 for a description of the management API for creating queues.

25.3. Configuring Queues Via Address Settings

There are some attributes that are defined against an address wildcard rather than a specific queue. Here an example
of an addr ess- set ti ng entry that would be found in the hor net g- conf i gurati on. xm file.

<addr ess-settings>
<address-setting match="j ns. queue. exanpl eQueue" >
<dead- | ett er-address>j ns. queue. deadlLet t er Queue</ dead- | ett er - addr ess>
<max- del i very- att enpt s>3</ max-del i very-attenpt s>
<redel i very-del ay>5000</r edel i very- del ay>
<expi ry- addr ess>j ns. queue. expi r yQueue</ expi ry- addr ess>
<| ast - val ue- queue>t rue</ | ast - val ue- queue>
<max- si ze- byt es>100000</ nax- si ze- byt es>
<page- si ze- byt es>20000</ page- si ze- byt es>
<redi stribution-del ay>0</redi stribution-del ay>
<send-t o- dl a- on- no-rout e>t rue</ send-t o- dl a- on- no-r out e>
<address-ful |l - pol i cy>PAGE</ addr ess-ful | - policy>
</ addr ess-setting>
</ addr ess-settings>

Theideawith address settings, is you can provide ablock of settings which will be applied against any adresses that
match the string inthe mat ch attribute. In the above exampl e the settingswould only be applied to any addresseswhich
exactly match the addressj ns. queue. exanpl eQueue, but you can also use wildcards to apply sets of configuration
against many addresses. The wildcard syntax used is described here.

For example, if you used the mat ch stringj ns. queue. # the settings would be applied to all addresses which start with
j ms. queue. which would be all IMS queues.

Themeaning of the specific settingsare explained fully throughout the user manual, however hereisabrief description
with alink to the appropriate chapter if available.

max- del i very- at t enpt s defines how many time a cancelled message can be redelivered before sending to the dead-
| etter-address. A full explanation can be found here.

redel i very- del ay defines how long to wait before attempting redelivery of a cancelled message. see here.

88

Queue Attributes

expi ry- addr ess defines where to send a message that has expired. see here.
| ast - val ue- queue defines whether a queue only uses last values or not. see here.
max- si ze- byt es and page- si ze- byt es are used to set paging on an address. Thisis explained here.

redi stri bution-del ay defines how long to wait when the last consumer is closed on a queue before redistributing
any messages. see here.

send-to-dl a-on-no-rout e. If a message is sent to an address, but the server does not route it to any queues, for
example, there might be no queues bound to that address, or none of the queues have filters that match, then normally
that message would be discarded. However if this parameter is set to true for that address, if the messageis not routed
to any queuesit will instead be sent to the dead letter address (DLA) for that address, if it exists.

addr ess- ful | - pol i cy. Thisattribute can have one of thefollowing values: PAGE, DROP or BLOCK and determines
what happens when an address where max- si ze- byt es is specified becomes full. The default value is PAGE. If the
valueis PAGE then further messageswill be paged to disk. If the valueis DROP then further messageswill be silently
dropped. If the value is BLOCK then client message producers will block when they try and send further messages.
See the following chapters for more info Chapter 19, Chapter 24.

89

26

Scheduled Messages

Scheduled messages differ from normal messages in that they won't be delivered until a specified timein the future,
at the earliest.

To do this, aspecial property is set on the message before sending it.

26.1. Scheduled Delivery Property

The property name used to identify a scheduled message is " _HQ SCHED DELI VERY" (or the constant
Message. HDR_SCHEDULED DELI VERY_TI ME).

The specified valuemust beapositivel ong corresponding to thetimethe message must be delivered (in milliseconds).
An example of sending a scheduled message using the IMS API isasfollows.

Text Message nessage =
sessi on. creat eText Message("This is a schedul ed nessage nessage which will be delivered
in5 sec.");
message. set LongProperty("_HQ SCHED DELI VERY", SystemcurrentTineMIlis() + 5000);
producer. send(nmessage) ;

/1 message will not be received i mediately but 5 seconds | ater
Text Message nmessageRecei ved = (Text Message) consuner.receive();

Scheduled messages can also be sent using the core API, by setting the same property on the core message before
sending.

26.2. Example

See Section 11.1.43 for an example which shows how scheduled messages can be used with JIMS.

90

2/

Last-Value Queues

Last-Vaue queues are special queues which discard any messages when a newer message with the same value for a
well-defined Last-Value property is put in the queue. In other words, a Last-Value queue only retains the last value.

A typical example for Last-Vaue queue is for stock prices, where you are only interested by the latest value for a
particular stock.

27.1. Configuring Last-Value Queues

Last-value queues are defined in the address-setting configuration:

<address-setting match="j ms. queue. | ast Val ueQueue" >
<| ast - val ue- queue>t rue</ | ast - val ue- queue>
</ addr ess-setting>

By default, | ast - val ue- queue is false. Address wildcards can be used to configure Last-Vaue queues for a set of
addresses (see Chapter 13).

27.2. Using Last-Value Property

The property name used to identify thelast valueis" _HQ LvVQ NAME" (or the constant Message. HDR_LAST_VALUE_NAME
from the Core API).

For example, if two messages with the same value for the Last-Value property are sent to a Last-Vaue queue, only
the latest message will be kept in the queue:

/1 send 1lst message with Last-Value property set to STOCK NAVE
Text Message nmessage =
sessi on. cr eat eText Message(" 1st nessage with Last-Val ue property set");
message. set Stri ngProperty("_HQ LVQ NAME', "STOCK NAME");
producer. send(message) ;

/1l send 2nd nmessage with Last-Val ue property set to STOCK NAVE
nessage =
sessi on. cr eat eText Message("2nd nessage with Last-Val ue property set");
message. set Stri ngProperty("_HQ LVQ NAME", "STOCK NAME");
producer . send(message) ;

91

Last-Vaue Queues

/1 only the 2nd nessage will be received: it is the latest with

/1 the Last-Value property set

Text Message nmessageRecei ved = (Text Message) messageConsuner . recei ve(5000) ;
System out . format (" Recei ved nessage: %\ n", nessageRecei ved. getText());

27.3. Example

See Section 11.1.23 for an example which shows how last value queues are configured and used with IMS.

92

28

Message Grouping

M essage groups are sets of messages that have the following characteristics:

» Messagesin amessage group sharethe samegroupid, i.e. they have same group identifier property (JVMSXG oupl D
for IMS, _HQ GroupP_I D for HornetQ Core API).

« Messagesin a message group are always consumed by the same consumer, even if there are many consumers on
aqueue. They pin al messages with the same group id to the same consumer. If that consumer closes another
consumer is chosen and will receive all messages with the same group id.

Message groups are useful when you want all messages for a certain value of the property to be processed serialy
by the same consumer.

An example might be ordersfor acertain stock. Y ou may want ordersfor any particular stock to be processed serially
by the same consumer. To do thisyou can create a pool of consumers (perhaps one for each stock, but lesswill work
t00), then set the stock name as the value of the _ HQ_GROUP_ID property.

Thiswill ensure that all messages for a particular stock will always be processed by the same consumer.

28.1. Using Core API

The property name used to identify the message group is "_HQ GRoUP_ID* (or the constant
Messagel mpl . HDR_GROUP_I D). Alternatively, you can set aut ogr oup to true on the Sessi onFact ory which will pick
arandom uniqueid.

28.2. Using JMS

The property name used to identify the message group is JMSXG oupl D.

/1 send 2 nessages in the same group to ensure the sane
[l consuner will receive both

Message nessage = ...

nmessage. set Stri ngProperty("JMSXG oupl D', "G oup-0");
producer. send(message) ;

nessage = ...
message. set Stri ngProperty("JMSXG oupl D', "G oup-0");
producer. send(message) ;

93

Message Grouping

Alternatively, you can set aut ogr oup to true on the Hor net QConnect onFact ory which will pick arandom uniqueid.
Thiscan aso be set inthehor net g-j ms. xm filelike this:

<connection-factory nane="Connecti onFactory">
<connect or s>
<connect or-ref connector-name="netty-connector"/>
</ connect or s>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<aut ogr oup>t r ue</ aut ogr oup>
</ connection-factory>

Alternatively you can set the group id via the connection factory. All messages sent with producers created via this
connection factory will set the IMsXGr oupl D to the specified value on al messages sent. To configure the group id
set it on the connection factory in the hor net g-j ms. xm config file as follows

<connection-factory nane="Connecti onFactory">
<connect or s>
<connect or-ref connector-name="netty-connector"/>
</ connect or s>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<gr oup-i d>G oup- 0</ gr oup-i d>
</ connection-factory>

28.3. Example

See Section 11.1.29 for an example which shows how message groups are configured and used with IMS.

28.4. Example

See Section 11.1.30 for an example which shows how message groups are configured via a connection factory.

28.5. Clustered Grouping

Using message groups in a cluster is a bit more complex. This is because messages with a particular group id can
arrive on any node so each node needs to know about which group id's are bound to which consumer on which node.
The consumer handling messages for a particular group id may be on a different node of the cluster, so each node
needs to know this information so it can route the message correctly to the node which has that consumer.

To solve this there is the notion of a grouping handler. Each node will have its own grouping handler and when a
messagesis sent with agroup id assigned, the handlerswill decide between them which route the message should take.

There are 2 types of handlers; Local and Remote. Each cluster should choose 1 node to have alocal grouping handler
and all the other nodes should have remote handlers- it'sthe local handler that actually makes the decsion as to what

94

Message Grouping

route should be used, all the other remote handlers converse with this. Here is a sample config for both types of
handler, this should be configured in the hornetg-configuration.xml file.

<gr oupi ng- handl er name="ny- gr oupi ng- handl er" >
<t ype>LOCAL</type>
<addr ess>j ns</ addr ess>
<ti meout >5000</ti meout >

</ gr oupi ng- handl er >

<gr oupi ng- handl er name="ny- gr oupi ng- handl er" >
<t ype>REMOTE</ t ype>
<addr ess>j ns</ addr ess>
<ti meout >5000</ti meout >

</ gr oupi ng- handl er >

The address attribute refers to a cluster connection and the address it uses, refer to the clustering section on how to
configure clusters. The timeout attribute referes to how long to wait for a decision to be made, an exception will be
thrown during the send if this timeout is reached, this ensures that strict ordering is kept.

The decision as to where a message should be routed to isinitially proposed by the node that receives the message.
The node will pick a suitable route as per the normal clustered routing conditions, i.e. round robin available queues,
use alocal queue first and choose a queue that has a consumer. If the proposal is accepted by the grouping handlers
the node will route messages to this queue from that point on, if rejected an alternative route will be offered and the
node will again route to that queue indefinitely. All other nodes will also route to the queue chosen at proposal time.
Once the message arrives at the queue then normal single server message group semantics take over and the message
is pinned to a consumer on that queue.

Y ou may have noticed that there isasingle point of failure with the single local handler. If this node crashes then no
decisionswill be able to be made. Any messages sent will be not be delivered and an exception thrown. To avoid this
happening Local Handlers can be replicated on another backup node. Simple create your back up node and configure
it with the same Local handler.

28.5.1. Clustered Grouping Best Practices

Some best practices should be followed when using clustered grouping:

1. Make sure your consumers are distributed evenly across the different nodes if possible. Thisis only an issue
if you are creating and closing consumers regularly. Since messages are always routed to the same queue once
pinned, removing a consumer from this queue may leave it with no consumers meaning the queue will just keep
receiving the messages. Avoid closing consumers or make sure that you always have plenty of consumers, i.e.,
if you have 3 nodes have 3 consumers.

2. Usedurable queuesif possible. If queues are removed once a group is bound to it, then it is possible that other
nodes may still try to route messages to it. This can be avoided by making sure that the queue is deleted by
the session that is sending the messages. This means that when the next message is sent it is sent to the node
where the queue was deleted meaning a new proposal can succesfully take place. Alternatively you could just
start using a different group id.

3. Always make sure that the node that has the Local Grouping Handler is replicated. These meansthat on failover
grouping will still occur.

95

Message Grouping

28.5.2. Clustered Grouping Example

See Section 11.1.6 for an example of how to configure message groups with a HornetQ cluster

96

29

Pre-Acknowledge Mode

JMS specifies 3 acknowledgement modes:
* AUTO _ACKNOW.EDGE

e CLI ENT_ACKNOW.EDGE

* DUPS_OK_ACKNOW.EDGE

However thereis another case which is not supported by JMS: In some cases you can afford to lose messagesin event
of failure, so it would make sense to acknowledge the message on the server before delivering it to the client.

This extramode is supported by HornetQ and will call it pre-acknowl edge mode.

The disadvantage of acknowledging on the server before delivery isthat the message will belost if the system crashes
after acknowledging the message on the server but beforeit is delivered to the client. In that case, the message islost
and will not be recovered when the system restart.

Depending on your messaging case, pr e- acknow edgenent mode can avoid extra network traffic and CPU at the
cost of coping with message |oss.

An example of ause case for pre-acknowledgement is for stock price update messages. With these messages it might
be reasonabl e to lose a message in event of crash, since the next price update message will arrive soon, overriding
the previous price.

Note

Please note, that if you use pre-acknowledge mode, then you will lose transactional semantics for messages
being consumed, since clearly they are being acknowledged first on the server, not when you commit the
transaction. This may be stating the obvious but we like to be clear on these things to avoid confusion!

29.1. Using PRE_ACKNOWLEDGE

This can be configured in the hor net g-j ms. xm file onthe connection factory likethis:

<connection-factory nane="Connecti onFactory">
<connect or s>
<connector-ref connector-nanme="netty-connector"/>
</ connect or s>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>

97

Pre-Acknowledge Mode

<pr e- acknow edge>t r ue</ pr e- acknow edge>
</ connecti on-factory>

Alternatively, to use pre-acknowledgement mode using the JMS API, create a JMS Session with the
Hor net QSessi on. PRE_ACKNOW.EDGE constant.

/1 messages will be acknow edge on the server *before* being delivered to the client
Sessi on session = connection. createSessi on(fal se, Hornet QSessi on. PRE_ACKNOANLEDCE) ;

Or you can set pre-acknowledge directly on the Hor net QConnect i onFact ory instance using the setter method.

To use pre-acknowledgement mode using the core API you can set it directly onthed i ent Sessi onFact ory instance
using the setter method.

29.2. Example

See Section 11.1.35 for an example which shows how to use pre-acknowledgement mode with IMS.

98

30

Management

HornetQ has an extensive management API that allows a user to modify a server configuration, create new resources
(e.0. IMS queues and topics), inspect these resources (e.g. how many messages are currently held in a queue) and
interact with it (e.g. to remove messages from a queue). All the operations allows aclient to manage HornetQ. It also
allows clients to subscribe to management notifications.

There are 3 ways to manage HornetQ:

e Using IMMX -- IMX isthe standard way to manage Java applications

e Using the core API -- management operations are sent to HornetQ server using core messages
e Using the IMS API -- management operations are sent to HornetQ server using JMS messages

Although there are 3 different ways to manage HornetQ each API supports the same functionality. If it is possible to
manage aresource using JM X it is also possible to achieve the same result using Core messages or JM S messages.

This choice depends on your requirements, your application settings and your environment to decide which way suits
you best.

30.1. The Management API

Regardless of the way you invoke management operations, the management APl isthe same.

For each managed resource, there exists a Javainterface describing what can be invoked for this type of resource.
HornetQ exposes its managed resources in 2 packages.

e Coreresources are located in the or g. hor net q. api . cor e. managenent package

e JMSresources are located in the or g. hor net g. api . j ms. managenent package

The way to invoke a management operations depends whether IM X, core messages, or JM S messages are used.

Note

A few management operations requires afilter parameter to chose which messages are involved by the
operation. Passing nul | or an empty string means that the management operation will be performed on all
messages.

99

Management

30.1.1. Core Management API

HornetQ defines a core management APl to manage core resources. For full details of the APl please consult the
javadoc. In summary:

30.1.1.1. Core Server Management
e Listing, creating, deploying and destroying queues
A list of deployed core queues can be retrieved using the get QueueNanes() method.

Core queues can be created or destroyed using the management operations createQueue()
or deployQueue() Or destroyQueue())on the HornetQServerControl (with the ObjectName
or g. hor net q: modul e=Cor e, t ype=Ser ver Or the resource namecor e. server)

cr eat eQueue Will fail if the queue already exists while depl oyQueue will do nothing.
¢ Pausing and resuming Queues

The QueueCont rol can pause and resume the underlying queue. When aqueueis paused, it will receive messages
but will not deliver them. When it's resumed, it'll begin delivering the queued messages, if any.

» Listing and closing remote connections

Client's remote addresses can be retrieved using | i st Renot eAddresses() . It is also possible to close the
connections associated with a remote address using the cl oseConnect i onsFor Addr ess() method.

Alternatively, connection IDscan belistedusingl i st Connect i onl Ds() and all the sessionsfor agiven connection
ID can belisted using | i st Sessi ons() .

e Transaction heuristic operations

In case of a server crash, when the server restarts, it it possible that some transaction requires manual
intervention. The |i st PreparedTransactions() method lists the transactions which are in the prepared
states (the transactions are represented as opaque Base64 Strings) To commit or rollback a given
prepared transaction, the conmit PreparedTransaction() Or rol | backPreparedTransaction() method can
be used to resolve heuristic transactions. Heuristically completed transactions can be listed using the
| i stHeuristicCommittedTransactions() andlistHeuristicRol | edBackTransacti ons methods.

« Enabling and resetting Message counters

Message counters can be enabled or disabled using the enabl eMessageCounters() oOf
di sabl eMessageCounters() method. To reset message counters, it is possible to invoke
reset Al | MessageCount ers() andreset Al | MessageCount er Hi st ori es() methods.

* Retrieving the server configuration and attributes

The Hor net QSer ver Cont r ol exposes HornetQ server configuration through all its attributes (e.g. get Ver si on()
method to retrieve the server's version, etc.)

30.1.1.2. Core Address Management

100

Management

Core addresses can be managed using the AddressControl class (with the ObjectName
or g. hor net q: nodul e=Cor e, t ype=Addr ess, nane="<t he address nanme>" Or theresource namecor e. addr ess. <t he

addr ess nane>).
e Modifying roles and permissions for an address

Y ou can add or remove roles associated to a queue using the addRol e() Or renoveRol e() methods. You can list
all the roles associated to the queue with the get Rol es() method

30.1.1.3. Core Queue Management

The bulk of the core management API deals with core queues. The QueueCont rol class defines the Core queue
management operations (with the ObjectName or g. hor net g: nodul e=Cor e, t ype=Queue, addr ess="<the bound

addr ess>", name="<t he queue nane>" Or the resource name cor e. queue. <t he queue nane>).

Most of the management operations on gueues take either a single message 1D (e.g. to remove a single message) or
afilter (e.g. to expire al messages with a given property.)

« Expiring, sending to a dead letter address and moving messages

Messages can be expired from a queue by using the expi reMessages() method. If an expiry addressis defined,
messages will be sent to it, otherwise they are discarded. The queue's expiry address can be set with the
set Expi r yAddr ess() method.

Messages can also be sent to a dead letter address with the sendMessagesToDeadLet t er Address() method.
It returns the number of messages which are sent to the dead letter address. If a dead letter address is not
defined, message are removed from the queue and discarded. The queue's dead letter address can be set with the
set DeadLet t er Addr ess() method.

Messages can also be moved from a queue to another queue by using the noveMessages() method.
e Listing and removing messages

Messages can be listed from a queue by using the 1 i st Messages() method which returns an array of mMap, one
Map for each message.

Messages can also be removed from the queue by using ther emoveMessages() method which returns abool ean
for thesinglemessage | D variant or the number of removed messagesfor thefilter variant. Ther enoveMessages()
method takes afil ter argument to remove only filtered messages. Setting the filter to an empty string will in
effect remove all messages.

e Counting messages

The number of messages in a queue is returned by the get MessageCount () method. Alternatively, the
count Messages() Will return the number of messages in the queue which match a given filter

» Changing message priority

The message priority can be changed by using the changeMessagesPri ori ty() method which returnsabool ean
for the single message |D variant or the number of updated messages for the filter variant.

101

Management

Message counters

Message counters can belisted for aqueuewiththel i st MessageCount er () and ! i st MessageCount er Hi st or y()
methods (see Section 30.6). The message counters can also be reset for a single queue using the
reset MessageCount er () method.

Retrieving the queue attributes

The QueueCont rol exposes Core gqueue settings through its attributes (e.g. get Fi I ter () to retrieve the queue's
filter if it was created with one, i sbur abl e() to know whether the queue is durable or not, etc.)

Pausing and resuming Queues

The QueueCont rol can pause and resume the underlying queue. When aqueueis paused, it will receive messages
but will not deliver them. When it's resume, it'll begin delivering the queued messages, if any.

30.1.1.4. Other Core Resources Management

HornetQ alowsto start and stop its remote resources (acceptors, diverts, bridges, etc.) so that aserver can be taken off
linefor agiven period of timewithout stopping it completely (e.g. if other management operations must be performed
such as resolving heuristic transactions). These resources are:

Acceptors

They can be started or stopped using the start () or. st op() method on the Accept or Control class (with the
ObjectName or g. hor net g: nodul e=Cor e, t ype=Accept or, nane="<t he acceptor name>" Or the resource name
core. acceptor. <the address nane>). The acceptors parameters can be retrieved using the Accept or Cont r ol
attributes (see Section 16.1)

Diverts

They can be started or stopped using the start() or stop() method on the bivert Control class (with
the ObjectName or g. hor net q: nodul e=Cor e, t ype=Di vert, name=<the divert nanme> Or the resource name
core.divert. <the divert nane>). Diverts parameters can beretrieved using the bi vert Cont r ol attributes (see
Chapter 35)

Bridges

They can be started or stopped using the start () (resp. stop()) method on the Bri dgeCont rol class (with
the ObjectName or g. hor net g: nodul e=Cor e, t ype=Bri dge, name="<t he bri dge nanme>" Or the resource name
core. bridge. <the bridge name>). Bridges parameters can beretrieved using the Bri dgeCont r ol attributes (see
Chapter 36)

Broadcast groups

They can be started or stopped using thestart () or st op() method on the Br oadcast GroupCont rol class (with
the ObjectName or g. hor net g: nodul e=Cor e, t ype=Br oadcast G oup, nane="<t he broadcast group name>" Of
the resource name cor e. br oadcast gr oup. <t he broadcast group nane>). Broadcast groups parameters can be
retrieved using the Br oadcast Gr oupCont r ol attributes (see Section 38.2.1)

Discovery groups

102

Management

They can be started or stopped using the st art () or st op() method on the bi scover yG oupControl class (with
the ObjectName or g. hor net g: nodul e=Cor e, t ype=Di scover yG oup, nane="<the di scovery group name>"
or the resource name core. di scovery. <t he di scovery group name>). Discovery groups parameters can be
retrieved using the Di scover yG oupCont r ol attributes (see Section 38.2.2)

Cluster connections

They can be started or stopped using the start () or stop() method on the d uster Connecti onContr ol
class (with the ObjectName org. hor net g: modul e=Cor e, t ype=d ust er Connect i on, nane="<the cl uster
connecti on name>" Or theresource namecor e. cl ust er connecti on. <t he cl uster connecti on narme>). Cluster
connections parameters can be retrieved using the d ust er Connect i onCont r ol attributes (see Section 38.3.1)

30.1.2. IMS Management API

HornetQ defines a IMS Management APl to manage JIMS administrated objects (i.e. IMS queues, topics and
connection factories).

30.1.2.1. JMS Server Management

JM S Resources (connection factories and destinations) can be created using the JvsSer ver Cont rol class (with the
ObjectName or g. hor net g: modul e=JMS, t ype=Ser ver Or the resource namej ns. ser ver).

Listing, creating, destroying connection factories
Names of the deployed connection factories can be retrieved by the get Connect i onFact or yNanmes() method.

JMS connection factories can be created or destroyed using the creat eConnecti onFact ory() methods or
dest royConnect i onFact ory() methods. These connection factories are bound to JNDI so that IMS clients
can look them up. If a graphical console is used to create the connection factories, the transport parameters
are specified in the text field input as a comma-separated list of key=value (e.g. key1=10, key2="val ue",
key3=fal se). If there are multiple transports defined, you need to enclose the key/value pairs between curly
braces. For example {key=10}, {key=20}. In that case, the first key will be associated to the first transport
configuration and the second key will be associated to the second transport configuration (see Chapter 16 for a
list of the transport parameters)

Listing, creating, destroying queues
Names of the deployed IMS queues can be retrieved by the get QueueNanes() method.

JM'S gueues can be created or destroyed using the cr eat eQueue() methods or dest royQueue() methods. These
gueues are bound to INDI so that IM S clients can look them up

Listing, creating/destroying topics
Names of the deployed topics can be retrieved by the get Topi cNanes() method.

JM S topics can be created or destroyed using the cr eat eTopi ¢() Or dest royTopi ¢() methods. These topics are
bound to INDI so that IMS clients can look them up

Listing and closing remote connections

103

Management

JMS Clients remote addresses can be retrieved using | i st Renot eAddr esses() . It is also possible to close the
connections associated with a remote address using the cl oseConnect i onsFor Addr ess() method.

Alternatively, connection IDscanbelistedusingl i st Connect i onl Ds() and all the sessionsfor agiven connection
ID can belisted using | i st Sessi ons() .

30.1.2.2. JMS ConnectionFactory Management

JMS Connection Factories can be managed using the Connect i onFact oryCont rol class (with the ObjectName
or g. hor net q: nmodul e=JMS, t ype=Connect i onFact ory, name="<t he connection factory nanme>" Or the resource

Namej ns. connecti onfactory. <the connection factory narre>).
* Retrieving connection factory attributes

The Connecti onFact oryControl exposes JMS ConnectionFactory configuration through its attributes (e.g.
get Consumer W ndowSi ze() to retrieve the consumer window sizefor flow control, i sBl ockOnNonDur abl eSend()
to know whether the producers created from the connection factory will block or not when sending non-durable

messages, €tc.)

30.1.2.3. IMS Queue Management

JMS queues can be managed using the JMsQueueControl class (with the ObjectName
or g. hor net g: nodul e=JMB, t ype=Queue, nanme="<t he queue name>" Of the resource namej ns. queue. <t he queue

name>).
The management operations on a JIMS queue are very similar to the operations on a core queue.
e Expiring, sending to a dead letter address and moving messages

Messages can be expired from a queue by using the expi reMessages() method. If an expiry addressis defined,
messages will be sent to it, otherwise they are discarded. The queue's expiry address can be set with the
set Expi ryAddr ess() method.

Messages can also be sent to a dead letter address with the sendMessagesToDeadLet t er Address() method.
It returns the number of messages which are sent to the dead letter address. If a dead letter address is not
defined, message are removed from the queue and discarded. The queue's dead letter address can be set with the
set DeadLet t er Addr ess() method.

Messages can also be moved from a queue to another queue by using the noveMessages() method.
e Listing and removing messages

Messages can be listed from a queue by using the 1 i st Messages() method which returns an array of map, one
Map for each message.

Messages can a so be removed from the queue by using the r emoveMessages() method which returnsabool ean
for the singlemessage | D variant or the number of removed messagesfor thefilter variant. Ther enoveMessages()
method takes afil ter argument to remove only filtered messages. Setting the filter to an empty string will in
effect remove all messages.

104

Management

¢ Counting messages

The number of messages in a queue is returned by the get MessageCount () method. Alternatively, the
count Messages() Will return the number of messages in the queue which match a given filter

» Changing message priority

The message priority can be changed by using the changeMessagesPri ori t y() method which returnsabool ean
for the single message ID variant or the number of updated messages for the filter variant.

* Message counters

Message counters can belisted for aqueuewiththel i st MessageCount er () and ! i st MessageCount er Hi st or y()
methods (see Section 30.6)

* Retrieving the queue attributes

The JMsQueueCont r ol exposes JMS queue settings through its attributes (e.g. i sTenporary() to know whether
the queue istemporary or not, i sbur abl e() to know whether the queue is durable or not, etc.)

» Pausing and resuming queues

The JMsQueueCont rol can pause and resume the underlying queue. When the queueis paused it will continueto
receive messages but will not deliver them. When resumed again it will deliver the enqueued messages, if any.

30.1.2.4. JMS Topic Management

JMS Topics can be managed wusing the TopicControl class (with the ObjectName
or g. hor net g: nodul e=JMS, t ype=Topi ¢, name="<t he topic name>" Of the resource namej ns. t opi c. <t he topic

name>).
» Listing subscriptions and messages

JMS topics subscriptions can be listed using the 1i st Al l Subscriptions(), |istDurabl eSubscriptions(),
l'i st NonDur abl eSubscriptions() methods. These methods return arrays of bject representing the
subscriptions information (subscription name, client ID, durability, message count, etc.). It isalso possible to list
the IM S messages for a given subscription with the i st MessagesFor Subscri pti on() method.

» Dropping subscriptions
Durable subscriptions can be dropped from the topic using the dr opDur abl eSubscri pti on() method.
¢ Counting subscriptions messages

The count MessagesFor Subscri pti on() method can be used to know the number of messages held for a given
subscription (with an optional message selector to know the number of messages matching the selector)

30.2. Using Management Via JMX

HornetQ can be managed using IM X [http://java.sun.com/javase/technol ogies/core/mntr-mgmt/javamanagement/].

105

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Management

The management API is exposed by HornetQ using MBeans interfaces. HornetQ registers its resources with the
domain or g. hor net q.

For example, the vj ect Name to manage a IMS Queue exanpl eQueue iS:

or g. hor net g: nodul e=JMS, t ype=Queue, nane="exanpl eQueue"

and the MBean is;

org. hornet g. api . j ns. managenent . JM5QueueCont r ol

The MBean's j ect Nare are built using the helper classor g. hor net q. api . cor e. managenent . Obj ect NaneBui | der .
You can also usej consol e to find the j ect Nane of the MBeans you want to manage.

Managing HornetQ using IMX is identical to management of any Java Applications using JMX. It can be done by
reflection or by creating proxies of the MBeans.

30.2.1. Configuring JMX

By default, IMX is enabled to manage HornetQ. It can be disabled by setting j mx- managenent - enabl ed tO f al se

in hor net g- confi gurati on. xm :

<I-- false to disable JMX nanagenent for HornetQ -->
<j mx- managenent - enabl ed>f al se</j nx- managenent - enabl ed>

If IMX is enabled, HornetQ can be managed locally using j consol e.
Note

Remote connectionsto IM X are not enabled by default for security reasons. Please refer to Java M anagement
guide [http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote] to configurethe server for
remote management (System properties must be set inrun. sh or run. bat Scripts).

By default, HornetQ server uses the IMX domain "org.hornetq". To manage several HornetQ servers from the same
MBeanServer, the IMX domain can be configured for each individual HornetQ server by setting j mx- domai n in

hor net g- confi gurati on. xm :

<l-- use a specific JMX donmain for HornetQ MBeans -->
<j mx- domai n>ny. or g. hor net q</ j nx- domai n>

30.2.1.1. MBeanServer configuration

106

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote

Management

When HornetQ isrun in standalone, it usesthe JavaVirtual Machine'spl at f or m MBeanSer ver to register its MBeans.
Thisis configured in JBoss Microcontainer Beansfile (see Section 6.7):

<l-- MBeanServer -->
<bean nane="MBeanServer" class="j avax. managenent. MBeanServer">
<constructor factoryC ass="java. | ang. managenent . Managenent Fact or y"
fact oryMet hod="get Pl at f or nivBeanSer ver" />
</ bean>

When it isintegrated in JBoss AS 5+, it uses the Application Server's own MBean Server so that it can be managed
using AS 5'sjmx-console;

<l-- MBeanServer -->
<bean nane="MBeanServer" class="j avax. managenent. MBeanServer">
<constructor factoryC ass="org.]jboss. nx.util.MeanServerLocator"
fact oryMet hod="I ocat eJBoss" />
</ bean>

30.2.2. Example

See Section 11.1.21 for an example which shows how to use a remote connection to IMX and MBean proxies to
manage HornetQ.

30.3. Using Management Via Core API

The core management APl in HornetQ is called by sending Core messages to a special address, the management
address.

Management messages are regular Core messages with well-known properties that the server needs to understand to
interact with the management API:

* The name of the managed resource
e The name of the management operation
¢ The parameters of the management operation

When such a management message is sent to the management address, HornetQ server will handle it, extract the
information, invoke the operation on the managed resources and send a management reply to the management
message's reply-to address (specified by d i ent Messagel npl . REPLYTO_HEADER_NAME).

A dient Consumer can be used to consume the management reply and retrieve the result of the operation (if any)
stored in the reply's body. For portability, results are returned as a JSON [http://json.org] String rather than Java
Serialization (the or g. hor net g. api . cor e. managerment . Management Hel per can be used to convert the JSON string
to Java objects).

These steps can be simplified to make it easier to invoke management operations using Core messages.

107

http://json.org

Management

1. Createadient Request or to send messages to the management address and receive replies
2. Createad i ent Message

3. Use the helper class org. hornet g. api . cor e. managenent . Managenent Hel per to fill the message with the
management properties

4. Send the message using the d i ent Request or

5. Use the helper class or g. hor net q. api . cor e. managenent . Managenent Hel per toO retrieve the operation result
from the management reply

For example, to find out the number of messagesin the core queue exanpl eQueue:

Cl i ent Session session = ...

d i ent Request or requestor = new Cient Requestor(session, "jns.queue. hornet q. managenent ") ;
C i ent Message nessage = session. creat eMessage(fal se);
Managenent Hel per . put Attri but e(message, "core. queue. exanpl eQueue", "nmessageCount");

C i ent Message reply = requestor.request(nj;
int count = (Integer) Managenent Hel per. get Result(reply);
Systemout.println("There are " + count + " messages in exanpl eQueue");

Management operation nhame and parameters must conformto the Javainterfacesdefined inthemanagenent packages.

Names of the resources are built using the helper classor g. hor net g. api . cor e. management . Resour ceNanes and are
straightforward (cor e. queue. exanpl eQueue for the Core Queue exanpl eQueue, j ns. t opi c. exanpl eTopi ¢ for the
JMS Topic exanpl eTopi ¢, €tC.).

30.3.1. Configuring Core Management

The management address to send management messages is configured in hor net g- conf i gur ati on. xni :

<managenent - addr ess>j nms. queue. hor net q. managenent </ nanagenent - addr ess>

By default, the addressisj ms. queue. hor net g. managerent (it is prepended by "jms.queue” so that IMS clients can
also send management messages).

The management address requires a special user permission manage to be able to receive and handle management
messages. Thisis also configured in hornetg-configuration.xml:

<I-- users with the admin role will be allowed to nanage -->
<l -- HornetQ usi ng nanagenment nessages -->
<security-setting match="j ns. queue. hor net . managenent " >

<per m ssi on type="manage" rol es="adm n" />
</security-setting>

108

Management

30.4. Using Management Via JMS

Using JM S messages to manage HornetQ is very similar to using core API.

An important difference is that IMS requires a IMS queue to send the messages to (instead of an address for the
core API).

The management queue is a specia queue and needs to be instantiated directly by the client:

Queue managenent Queue = Hornet QIMSCl i ent . cr eat eQueue(" hor net . managenent ") ;

All the other steps are the same than for the Core API but they use IMS API instead:
1. create aQueueRequest or t0 send messages to the management address and receive replies
2. create aMessage

3. use the helper class or g. hor net q. api . j ms. management . JMSManagenent Hel per to fill the message with the
management properties

4. send the message using the QueueRequest or

5. usethe helper classor g. hor net g. api . j ms. managenent . JMSManagement Hel per to retrieve the operation result
from the management reply

For example, to know the number of messages in the IMS queue exanpl eQueue:

Queue managenent Queue = Hor net QJMSCl i ent . cr eat eQueue(" hor net q. managenent ") ;

QueueSessi on session = ...

QueueRequest or requestor = new QueueRequest or (sessi on, managenent Queue);
connection.start();

Message nmessage = session. creat eMessage();

JMBManagenent Hel per. put Attri but e(message, "j ns. queue. exanpl eQueue”, "messageCount");
Message reply = requestor.request (nmessage);

int count = (Integer)JMSManagenent Hel per. getResult(reply);

Systemout.println("There are " + count + " messages in exanpl eQueue");

30.4.1. Configuring JMS Management
Whether IM S or the core APl is used for management, the configuration steps are the same (see Section 30.3.1).

30.4.2. Example

See Section 11.1.25 for an example which shows how to use JM S messages to manage HornetQ server.

30.5. Management Notifications

109

Management

HornetQ emits notifications to inform listeners of potentially interesting events (creation of new resources, security
violation, etc.).

These notifications can be received by 3 different ways:
* JMX notifications

¢ Core messages

e JMSmessages

30.5.1. JMX Notifications

If IMX is enabled (see Section 30.2.1), IMX notifications can be received by subscribing to 2 MBeans:
e org. hornet q: nodul e=Cor e, t ype=Ser ver for notifications on Core resources

* org. hornet g: nodul e=JM5, t ype=Ser ver for notifications on IMS resources
30.5.2. Core Messages Notifications

HornetQ defines a special management notification address. Core queues can be bound to this address so that clients
will receive management notifications as Core messages

A Core client which wants to receive management notifications must create a core queue bound to the management
notification address. It can then receive the notifications from its queue.

Notifications messages are regular core messages with additional properties corresponding to the natification (its
type, when it occurred, the resources which were concerned, etc.).

Since natifications are regular core messages, it is possible to use message selectors to filter out notifications and
receives only asubset of all the notifications emitted by the server.

30.5.2.1. Configuring The Core Management Notification Address

The management notification address to receive management notifications is configured in hor net g-

configuration. xm:

<managenent - noti fi cati on- addr ess>hornet q. noti fi cati ons</ managenent - noti fi cati on-address>

By default, the addressishor net g. noti fi cati ons.
30.5.3. IMS Messages Notifications

HornetQ's notifications can also be received using JM S messages.

It is similar to receiving notifications using Core API but an important difference is that JMS requires a IMS
Destination to receive the messages (preferably a Topic).

110

Management

To useaJM S Destination to receive management notifications, you must change the server's management notification

address to start with j ns. queue if itisaJMS Queue or j ns. t opi ¢ if itisaIJMS Topic:

<l-- notifications will be consuned from "notificationsTopic" JMS Topic -->

<managenent - noti fi cati on- address>j ns. t opi c. noti fi cati onsTopi c</ managenent - noti fi cati on- addr es

Once the notification topic is created, you can receive messages from it or set a Messageli st ener :

Topi c notificationsTopic = Hornet QMsC ient.createTopic("notificationsTopic");

Sessi on session = ...
MessageConsumner notificati onConsunmer = session. createConsuner (notificati onsTopic);
notificati onConsuner. set MessagelLi st ener (new MessagelLi st ener ()

{
public void onMessage(Message noti f)
{
Systemout.println("------------------------ ");
System out. println("Received notification:");
try
{
Enunerati on propertyNames = notif. getPropertyNanmes();
whi | e (propertyNanes. hashor eEl enent s())
{
String propertyNanme = (String)propertyNanes. next El enent () ;
Systemout.format (" 9%: %\n", propertyNanme, notif.get ObjectProperty(proper
}
}
catch (JMsException e)
{
}
Systemout.println("------------------------ ");
}
b

30.5.4. Example

tyNane));

See Section 11.1.26 for an example which shows how to use a JMS Messageli st ener t0 receive management

notifications from HornetQ server.

30.6. Message Counters

M essage counters can be used to obtain information on queues over time as HornetQ keeps ahistory on queue metrics.

They can be used to show trends on queues. For example, using the management AP, it would be possible to query
the number of messages in a queue at regular interval. However, this would not be enough to know if the queue is
used: the number of messages can remain constant because nobody is sending or receiving messages from the queue
or because there are as many messages sent to the queue than messages consumed from it. The number of messages

in the queue remains the same in both cases but its use iswidely different.

111

Management

M essage counters gives additional information about the queues:

30

count

Thetotal number of messages added to the queue since the server was started
countDelta

the number of messages added to the queue since the last message counter update
depth

The current number of messages in the queue

depthDel ta

The overall number of messages added/removed from the queue since the last message counter update. For
example, if dept hDel t a is equal to - 10 this means that overall 10 messages have been removed from the queue
(e.g. 2 messages were added and 12 were removed)

| ast AddTi mest anp
The timestamp of the last time a message was added to the queue
udpat eTi nest anp

The timestamp of the last message counter update

.6.1. Configuring Message Counters

By default, message counters are disabled as it might have a small negative effect on memory.

To enable message counters, you can set it to t r ue in hor net g- conf i gurati on. xm :

<nmessage- count er - enabl ed>t r ue</ message- count er - enabl ed>

Message counters keeps a history of the queue metrics (10 days by default) and samples al the queues at regular
interval (10 seconds by default). If message counters are enabled, these values should be configured to suit your
messaging Use case in hor net g- confi guration. xm :

<l--
<nessage- count er - max- day- hi st or y>7</ nessage- count er - max- day- hi st ory>
<l--
<nessage- count er - sanpl e- peri o0d>60000</ message- count er - sanpl e- peri od>

keep history for a week -->

sanpl e the queues every minute (60000ns) -->

Message counters can be retrieved using the Management API. For example, to retrieve message counterson aJMS
Queue using IMX:

112

Management

/'l retrieve a connection to HornetQ s MBeanServer
MBeanSer ver Connecti on nbsc = ...
JMSQueueCont r ol MBean queueControl = (JMSQueueControl) MBeanServer | nvocati onHandl er. newPr oxyl nst ance(nbsc,
on,
JMBQueueControl . cl ass,

fal se);
/1l message counters are retrieved as a JSON String
String counters = queueControl.listMssageCounter();

/'l use the MessageCounterlnfo hel per class to nani pul ate nessage counters nore easily
MessageCount er I nf o messageCount er = MessageCount er | nfo. f romJSON(count ers) ;
System out. format ("% nessage(s) in the queue (since |ast sanple: %)\n",

count er. get Dept h(),

counter.getDepthDelta());

30.6.2. Example

See Section 11.1.27 for an example which shows how to use message countersto retrieveinformationonaJM S Queue.

30.7. Administering HornetQ Resources Using The JBoss AS Admin Co

Its possible to create and configure HornetQ resources via the admin console within the JBoss Application Server.
The Admin Console will allow you to create destinations (JM S Topics and Queues) and JIM S Connection Factories.

Once logged in to the admin console you will see aJMS Manager item in the left hand tree. All HornetQ resources
will be configured viathis. Thiswill have a child items for IMS Queues, Topics and Connection Factories, clicking
on each node will reveal which resources are currently available. The following sections explain how to create and
configure each resourcein turn.

30.7.1. IMS Queues

To create a new JMS Queue click on the IMS Queues item to reveal the available gqueues. On the right hand panel
you will see an add a new resource button, click on this and then choose the default(JM S Queue) template and click
continue. The important things to fill in here are the name of the queue and the JINDI name of the queue. The JNDI
name is what you will use to look up the queue in INDI from your client. For most queues this will be the only info
you will need to provide as sensible defaults are provided for the others. You will also see a security roles section
near the bottom. If you do not provide any roles for this queue then the servers default security configuration will
be used, after you have created the queue these will be shown in the configuration. All configuration values, except
the name and JNDI name, can be changed viathe configuration tab after clicking on the queue in the admin console.
The following section explains these in more detail

After highlighting the configuration you will see the following screen

113

Management

* denotes a required field.

nset | vaiue
NNNNN : DLQ

‘‘‘‘‘‘‘‘‘‘ /queue/DLQ

jms_queue DLQ

Expiry Address ims_queue ExpiryQueue

max size of Address * 10485760

Page iz * 10485760

Address Full Message Policy * The elcy o g Wi this Address is Al PAGE means th 1 Message will e paged. DROP means ihat messages are st drppoed and SLOCK mears the te clent will bk on se ur e ueus clears some meszages

The name and JNDI name cant be changed, if you want to change these recreate the queue with the appropriate
settings. The rest of the configuration options, apart from security roles, relate to address settings for a particular
address. The default address settings are picked up from the servers configuration, if you change any of these settings
or create a queue via the console a new Address Settings enrty will be added. For a full explanation on Address
Settings see Section 25.3

To delete a queue simply click on the delete button beside the gueue name in the main IM S Queues screen. Thiswill
also delete any address settings or security settings previously created for the queues address

The last part of the configuration options are security roles. If non are provided on creation then the servers default
security settings will be shown. If these are changed or updated then new securty settings are created for the address
of this queue. For more information on securuty setting see Chapter 31

Itisalso possible viathe metricstab to view statistics for this queue. Thiswill show statistics such as message count,
consumer count etc.

Operations can be performed on a queue via the control tab. This will allow you to start and stop the queue,
list,move,expire and del ete messages from the queue and other useful operations. To invoke an operation click on the
button for the operation you want, thiswill take you to a screen where you can parametersfor the opertion can be set.
Once set clicking the ok button will invoke the operation, results appear at the bottom of the screen.

30.7.2. IMS Topics

Creating and configuring JMS Topics is almost identical to creating queues. The only difference is that the
configuration will be applied to the queue representing a subscription.

30.7.3. JMS Connection Factories

The format for creating connection factories is the same as for IMS Queues and topics apart from the configuration
being different. For aslist of all the connection factory settings see the configuration index

114

31

Security

Thischapter describes how security workswith HornetQ and how you can configureit. To disable security completely
simply set the securi ty- enabl ed property to falsein the hor net g- confi gurati on. xni file.

For performance reasons security is cached and invalidated every so long. To change this period set the property
security-invalidation-interval,whichisinmilliseconds. The default is 10000 ms.

31.1. Role based security for addresses

HornetQ contains a flexible role-based security model for applying security to queues, based on their addresses.

Asexplained in Chapter 8, HornetQ core consists mainly of sets of queues bound to addresses. A message is sent to
an address and the server looks up the set of queues that are bound to that address, the server then routes the message
to those set of queues.

HornetQ allows sets of permissions to be defined against the queues based on their address. An exact match on the
address can be used or awildcard match can be used using the wildcard characters '#' and **'.

Seven different permissions can be given to the set of queues which match the address. Those permissions are:
* creat eDurabl eQueue. Thispermission allows the user to create a durable queue under matching addresses.
e del et eDur abl eQueue. Thispermission allows the user to delete a durable queue under matching addresses.

e createNonDur abl eQueue. This permission alows the user to create a non-durable queue under matching
addresses.

* del et eNonDur abl eQueue. This permission alows the user to delete a non-durable queue under matching
addresses.

e send. This permission allows the user to send a message to matching addresses.
e consune. Thispermission allows the user to consume a message from a queue bound to matching addresses.

¢ manage. Thispermission allows the user to invoke management operations by sending management messages to
the management address.

For each permission, a list of roles who are granted that permission is specified. If the user has any of those roles,
he/she will be granted that permission for that set of addresses.

Let'stake asimple example, here's a security block from hor net g- confi gurati on. xni Of hor net g- queues. xni file:

115

Security

<security-setting match="gl obal queues. eur ope. #">
<perm ssi on type="creat eDur abl eQueue" rol es="adnin"/>
<per m ssi on type="del et eDur abl eQueue" rol es="adm n"/>
<per m ssi on type="creat eNonDur abl eQueue" rol es="adm n, guest, europe-users"/>
<perm ssi on type="del et eNonDur abl eQueue" rol es="adm n, guest, europe-users"/>
<perm ssi on type="send" rol es="admi n, europe-users"/>
<per m ssi on type="consune" rol es="adm n, europe-users"/>

</security-setting>

The '#' character signifies "any sequence of words". Words are delimited by the . ' character. For a full description
of the wildcard syntax please see Chapter 13. The above security block applies to any address that starts with the
string "global queues.europe.”:

Only userswho havethe admi n role can create or delete durable queues bound to an address that starts with the string
"global gueues.europe.”

Any users with the roles adni n, guest , Or eur ope- user s can create or delete temporary queues bound to an address
that starts with the string "global queues.europe.”

Any users with the roles admi n or eur ope- users can send messages to these addresses or consume messages from
queues bound to an address that starts with the string " global queues.europe.”

The mapping between a user and what rolesthey haveis handled by the security manager. HornetQ ships with a user
manager that reads user credentials from afile on disk, and can also plug into JAAS or JBoss Application Server
security.

For more information on configuring the security manager, please see Section 31.4.

There can be zero or more securi ty-setting elementsin each xml file. Where more than one match appliesto a
set of addresses the more specific match takes precedence.

Let'slook at an example of that, here's another securi ty- setti ng block:

<security-setting match="gl obal queues. eur ope. orders. #">
<per m ssion type="send" rol es="europe-users"/>
<perm ssi on type="consunme" rol es="europe-users"/>
</security-setting>

Inthissecurity-setting block the match 'global queues.europe.orders.# is more specific than the previous match
‘globalqueues.europe.#. So any addresses which match 'global queues.europe.orders.# will taketheir security settings
only from the latter security-setting block.

Note that settings are not inherited from the former block. All the settings will be taken from the more
specific matching block, so for the address 'global queues.europe.orders.plastics the only permissions that exist
are send and consune for the role europe-users. The permissions cr eat eDur abl eQueue, del et eDur abl eQueue,
cr eat eNonDur abl eQueue, del et eNonDur abl eQueue are not inherited from the other security-setting block.

116

Security

By not inheriting permissions, it allows you to effectively deny permissionsin more specific security-setting blocks
by simply not specifying them. Otherwise it would not be possible to deny permissions in sub-groups of addresses.

31.2. Secure Sockets Layer (SSL) Transport

When messaging clients are connected to servers, or servers are connected to other servers (e.g. via bridges) over an
untrusted network then HornetQ allows that traffic to be encrypted using the Secure Sockets Layer (SSL) transport.

For more information on configuring the SSL transport, please see Chapter 16.

31.3. Basic user credentials

HornetQ ships with a security manager implementation that reads user credentials, i.e. user names, passwords and
role information from an xml file on the classpath called hor net g- user s. xni . Thisisthe default security manager.

If you wish to use this security manager, then users, passwords and roles can easily be added into thisfile.

Let'stake alook at an examplefile:

<configuration xm ns="urn: hornet q"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="urn: hornetq ../schemas/ hornet g-users. xsd ">

<def aul tuser nane="guest" password="guest">
<rol e nane="guest"/>
</ def aul t user >

<user nane="tinm' password="marnite">
<rol e nane="adm n"/>
</ user>

<user nane="andy" password="doner _kebab">
<rol e nane="admi n"/>
<rol e nane="guest"/>

</ user >

<user nane="jeff" password="canenbert">
<rol e name="eur ope-users"/>
<rol e nane="guest"/>

</ user>

</ confi guration>

Thefirst thing to note is the element def aul t user . This defines what user will be assumed when the client does not
specify a username/password when creating a session. In this case they will be the user guest and havetherole a'so
called guest . Multiple roles can be specified for adefault user.

We then have three more users, the user t i mhas the role adni n. The user andy has the roles adni n and guest , and
theuser j ef f hastheroleseur ope- users and guest .

117

Security

31.4. Changing the security manager

If you do not want to use the default security manager then you can specify adifferent one by editing thefilehor net g-
beans. xm (Or hor net g- j boss- beans. xm if you're running JBoss Application Server) and changing the classfor the
Hor net QSecuri t yManager bean.

Let'stake alook at a snippet from the default beansfile:

<bean name="Hor net QSecurit yManager"
cl ass="org. hornetq. spi.core. security. Hor net QSecuri t yManager | npl ">
<start ignored="true"/>
<stop ignored="true"/>
</ bean>

The class or g. hor net q. spi . core. securi ty. Hor net @Securi t yManager | npl isthe default security manager that is
used by the standalone server.

HornetQ ships with two other security manager implementations you can use off-the-shelf; one a JAAS security
manager and another for integrating with JBoss Application Sever security, alternatively you could write your own
implementation by implementing the or g. hor net q. core. security. SecurityManager interface, and specifying the
classname of your implementation in the file hor net g- beans. xm (Or hor net g- j boss- beans. xni if you're running
JBoss Application Server).

These two implementations are discussed in the next two sections.

31.5. JAAS Security Manager

JAASstandsfor 'JavaAuthentication and Authorization Service' and isastandard part of the Javaplatform. It provides
acommon API for security authentication and authorization, allowing you to plugin your pre-built implementations.

To configure the JAAS security manager to work with your pre-built JAAS infrastructure you need to specify the
security manager as aJJAASSecuri t yManager inthe beansfile. Here's an example:

&l t ; bean nane="Hor net Securit yManager"
class="org. hornetq.integration.jboss.security.JAASSecurityManager">
& t;start ignored="true"/>
&l t;stop ignored="true"/>

&l t; property nane="Confi gurati onName" > ; org. hornet q. j ns. exanpl e. Exanpl eLogi nModul e&l t; / prioperty>
&l t; property name="Configuration">

& t;inject bean="Exanpl eConfiguration"/>
&l t;/property>
&l t; property name="Cal | backHandl er " > ;

& t;inject bean="Exanpl eCal | backHandl er"/ > ;
&l t;/property>

&l t;/beané>

Note that you need to feed the JAAS security manager with three properties:

118

Security

e ConfigurationName: the name of the Logi nMbdul e implementation that JAAS must use
e Configuration; the Conf i gur at i on implementation used by JAAS

e CalbackHandler: the cal | backHandl er implementation to useif user interaction are required

31.5.1. Example

See Section 11.1.19 for an example which shows how HornetQ can be configured to use JAAS.

31.6. JBoss AS Security Manager

The JBoss AS security manager is used when running HornetQ inside the JBoss Application server. Thisallowstight
integration with the JBoss Application Server's security model.

The class name of this security manager iSor g. hornet g. i nt egrati on. j boss. security. JBossASSecur i t yManager

Take alook at one of the default hor net g- j boss- beans. xm files for JBoss Application Server that are bundled in
the distribution for an example of how thisis configured.

31.6.1. Configuring Client Login

JBoss can be configured to alow client login, basically thisis when a JEE component such as a Servlet or EJB sets
security credentials on the current security context and these are used throughout the call. If you would like these
credentialsto be used by HornetQ when sending or consuming messagesthen setal | owd i ent Logi n to true. Thiswill
bypass HornetQ authentication and propgate the provided Security Context. If you would like HornetQ to authenticate
using the propogated security then set the aut hori seond i ent Logi n to true also.

Thereismoreinfo on using the JBoss client login modul e here [http://community.jboss.org/wiki/ClientLoginM odul €]
Note

If messages are sent non blocking then there is a chance that these could arrive on the server after the calling
thread has completed meaning that the security context has been cleared. If this is the case then messages
will need to be sent blocking

31.7. Changing the username/password for clustering

In order for cluster connections to work correctly, each node in the cluster must make connectionsto the other nodes.
The username/password they use for this should always be changed from the installation default to prevent a security
risk.

Please see Chapter 30 for instructions on how to do this.

119

http://community.jboss.org/wiki/ClientLoginModule

32

Application Server Integration and Java EE

HornetQ can be easily installed in JBoss Application Server 4 or later. For details on installing HornetQ in the JBoss
Application Server please refer to quick-start guide.

Since HornetQ also provides a JCA adapter, it is also possible to integrate HornetQ as a JIMS provider in other JEE
compliant app servers. For instructions on how to integrate a remote JCA adaptor into another application sever,
please consult the other application server'sinstructions.

A JCA Adapter basically controls the inflow of messages to Message-Driven Beans (MDBs) and the outflow of
messages sent from other JEE components, e.g. EJBs and Servlets.

This section explains the basics behind configuring the different JEE componentsin the AS.

32.1. Configuring Message-Driven Beans

Thedelivery of messagesto an MDB using HornetQ is configured on the JCA Adapter viaaconfiguration filer a. xm
which can be found under the j ns-ra. rar directory. By default thisis configured to consume messages using an
InVM connector from the instance of HornetQ running within the application server. The configuration properties
arelisted later in this chapter.

All MDBs however need to have the destination type and the destination configured. The following example shows
how this can be done using annotations:

@kssageDri ven(nane = " NMDBExanpl e",
activationConfig =
{
@\ct i vati onConfi gProperty(propertyName = "destinati onType", propertyValue = "jave
@\cti vati onConfi gProperty(propertyName = "destination", propertyValue = "queue/te
b
@Resour ceAdapter ("hornetqg-ra.rar")
public class MDBExanpl e inpl ements Messageli st ener
{
public void onMessage(Message nessage). ..

}

In this example you can see that the MDB will consume messages from a queue that is mapped into JNDI with the
binding queue/ t est Queue. Thisgueue must be preconfigured in the usual way using the HornetQ configuration files.

The Resour ceAdapt er annotation is used to specify which adaptor should be used. To use this you will need to
import or g. j boss. ej b3. annot at i on. Resour ceAdapt er for JBoss AS 5.X and later version which can be found in
thej boss- ej b3- ext - api . j ar which can be found in the JBoss repository. For JBoss AS 4.X, the annotation to use

iSorg. j boss. annot ati on. ej b. Resour ceAdapt or .

120

Application Server Integration and Java EE

Alternatively you can add use a deployment descriptor and add something like the following toj boss. xn

<message-dri ven>

<ej b- name>Exanpl eMDB</ ej b- nanme>

<r esour ce- adapt er - name>hor net g-ra. r ar </ r esour ce- adapt er - nane>
</ message-dri ven>

You can aso rename the hornetg-ra.rar directory to jms-rarar and neither the annotation or the extra descriptor
information will be needed. If you do this you will need to edit the j ms- ds. xni datasource file and change r ar -
nane €lement.

Note

HornetQ isthe default IMS provider for BBoss AS 6. Starting with this AS version, HornetQ resource adapter
isnamed j ms-ra. rar and you no longer need to annotate the MDB for the resource adapter name.

All the examples shipped with the HornetQ distribution use the annotation.
32.1.1. Using Container-Managed Transactions

When an M DB isusing Container-Managed Transactions (CMT), the delivery of the message is done within the scope
of aJTA transaction. The commit or rollback of thistransaction is controlled by the container itself. If the transaction
isrolled back then the message delivery semantics will kick in (by default, it will try to redeliver the message up to
10 times before sending to a DL Q). Using annotations this would be configured as follows:

@kssageDri ven(nane = "MDB_CMP_TxRequi r edExanpl e",
activationConfig =

{

@A\ct i vati onConf i gProperty(propertyNanme "destinationType", propertyValue = "jave
@A\ct i vati onConfi gProperty(propertyName = "destination", propertyValue = "queue/te
})
@r ansact i onManagenent (val ue= Transact i onManagenent Type. CONTAI NER)
@ransacti onAttribute(val ue= Transacti onAttri but eType. REQUI RED)
@Resour ceAdapt er ("hornetqg-ra.rar")
public class MDB_CMP_TxRequiredExanpl e i npl enents Messageli st ener
{

public void onMessage(Message nessage). . .

}

The Transact i onManagenent annotation tells the container to manage the transaction. The Transacti onAttribute
annotation tellsthe container that a JTA transaction is required for this MDB. Note that the only other valid value for
thisis Transacti onAttri but eType. NOT_SUPPORTED which tells the container that this MDB does not support JTA
transactions and one should not be created.

It is aso possible to inform the container that it must rollback the transaction by calling set Rol | backOnl y on the
MessageDr i venCont ext . The code for thiswould look something like:

@Resour ce
MessageDri venCont ext Cont ext ct x;

public void onMessage(Message nessage)

{

try

121

Application Server Integration and Java EE

{
// sonething here fails
}
catch (Exception e)
{
ct x. set Rol | backOnl y();
}
}

If you do not want the overhead of an XA transaction being created every time but you would still like the message
delivered within atransaction (i.e. you are only using aJM S resource) then you can configure the MDB to usealocal
transaction. This would be configured as such:

@kessageDri ven(nane = "MDB_CWVP_TxLocal Exanpl e",
activationConfig =

{
@Act i vati onConfi gProperty(propertyNanme = "destinati onType", propertyValue = "j
@Act i vati onConfi gProperty(propertyNane = "destination", propertyValue = "queue
@A\ct i vati onConfi gProperty(propertyName = "uselLocal Tx", propertyValue = "true")
b

@r ansact i onManagenent (val ue = Transact i onManagenent Type. CONTAI NER)
@r ansacti onAttri bute(val ue = Transacti onAttri but eType. NOT_SUPPORTED)
@Resour ceAdapt er ("hornetqg-ra.rar")

public class MDB_CMP_TxLocal Exanpl e i npl enents Messageli st ener

{

public void onMessage(Message nessage). ..

}

32.1.2. Using Bean-Managed Transactions

Message-driven beans can also be configured to use Bean-Managed Transactions (BMT). In this case a User
Transaction is created. Thiswould be configured as follows:

@kssageDri ven(nane = "MDB_BMPExanpl e",
activationConfig =

{
@\ct i vati onConfi gProperty(propertyNanme = "destinati onType", propertyValue = "jave
@\ct i vati onConfi gProperty(propertyNane = "destination", propertyValue = "queue/te
@\ct i vati onConfi gProperty(propertyName = "acknow edgeMdde", propertyVal ue = "Dups
})

@r ansact i onManagenent (val ue= Transact i onManagenent Type. BEAN)
@Resour ceAdapt er ("hornetqg-ra.rar")

public class MDB_BMPExanpl e i npl enents Messageli st ener

{

public void onMessage(Message nessage)

}

When using Bean-Managed Transactions the message delivery to the MDB will occur outside the scope of the user
transaction and use the acknowledge mode specified by the user with the acknow edgeMode property. There are only
2 acceptable values for this Aut o- acknow edge and Dups- ok- acknow edge. Please note that because the message
delivery isoutside the scope of the transaction afailure within the MDB will not cause the message to be redelivered.

A user would control the lifecycle of the transaction something like the following:

122

Application Server Integration and Java EE

@Resour ce
MessageDri venCont ext ct x;

public void onMessage(Message nessage)

{

User Transacti on tx;
try
{

Text Message text Message = (Text Message) nessage;
String text = textMessage. get Text();

User Transaction tx = ctx.getUserTransaction();
tx. begi n();

//do some stuff within the transaction

tx.commt();

}
catch (Exception e)

{
tx. roll back();

}

32.1.3. Using Message Selectors with Message-Driven Beans
It is aso possible to use MDBs with message selectors. To do this simple define your message selector as follows:

@kssageDri ven(name = "NMDBMessageSel ect or Exanpl e",
activationConfig =

{
@Act i vati onConfi gProperty(propertyNane = "destinati onType", propertyVal ue = "jave
@\ct i vationConfigProperty(propertyNane = "destination", propertyValue = "queue/te
@A\ct i vati onConfi gProperty(propertyName = "nessageSel ector", propertyVal ue = "col
})

@r ansact i onManagenent (val ue= Transact i onManagenent Type. CONTAI NER)
@ransacti onAttribute(val ue= Transacti onAttri but eType. REQUI RED)
@Resour ceAdapt er ("hornetqg-ra.rar")

public class MDBMessageSel ect or Exanpl e i npl enents Messageli st ener
{

public void onMessage(Message nessage). . ..

}

32.2. Sending Messages from within JEE components

The JCA adapter can also be used for sending messages. The Connection Factory to use is configured by default
inthej ns-ds. xm file and is mapped to j ava: / JmsXA. Using this from within a JEE component will mean that the
sending of the message will be done as part of the JTA transaction being used by the component.

Thismeansthat if the sending of the message fails the overall transaction would rollback and the message be re-sent.
Heres an example of this from within an MDB:

123

Application Server Integration and Java EE

@kssageDri ven(nane = "NMDBMessageSendTxExanpl e",
activationConfig =

{

@A\ct i vati onConf i gProperty(propertyNanme
@A\ct i vati onConfi gProperty(propertyNane

"destination",
b
@r ansact i onManagenent (val ue= Transact i onManagenment Type. CONTAI NER)
@ransacti onAttribute(val ue= Transacti onAttri but eType. REQUI RED)
@Resour ceAdapt er ("hornetqg-ra.rar")
public class MDBMessageSendTxExanpl e i npl ements MessagelLi st ener
{
@Resour ce(mappedNane = "java:/JnmsXA")
Connecti onFactory connecti onFactory;

@Resour ce(mappedNane = "queue/repl yQueue")
Queue repl yQueue;

public void onMessage(Message nessage)

{
Connection conn = null;
try
{
//Step 9. W know the client is sending a text nmessage so we cast
Text Message t ext Message = (Text Message) nessage;
//Step 10. get the text fromthe nmessage.
String text = textMessage. get Text();
Systemout. println("nessage " + text);
conn = connectionFactory. creat eConnection();
Session sess = conn. createSessi on(fal se, Sessi on. AUTO ACKNON_EDGE) ;
MessagePr oducer producer = sess. createProducer (repl yQueue);
producer. send(sess. creat eText Message("this is a reply"));
}
catch (Exception e)
{
e.printStackTrace();
}
finally
{
if(conn !'= null)
{
try
{
conn. cl ose();
}
catch (JMSException e)
{
}
}
}
}

"destinationType", propertyVal ue = "jave

propertyVal ue = "queue/te

124

Application Server Integration and Java EE

In JBoss Application Server you can use the IMS JCA adapter for sending messages from EJBs (including Session,
Entity and Message-Driven Beans), Servlets (including jsps) and custom MBeans.

32.3. Configuring the JCA Adaptor

The Java Connector Architecture (JCA) Adapter iswhat allows HornetQ to be integrated with JEE components such
as MDBs and EJBs. It configures how components such as MDBs consume messages from the HornetQ server and
also how components such as EJBs or Servlets can send messages.

The HornetQ JCA adapter is deployed viathe | ns-ra. rar archive. The configuration of the adapter isfound in this
archive under META- I NF/ ra. xm .

The configuration will look something like the following:

<r esour ceadapt er >
<r esour ceadapt er - cl ass>or g. hor net g. r a. Hor net QResour ceAdapt er </ r esour ceadapt er - cl ass>
<confi g- property>
<descri pti on>The transport type</description>
<confi g- property-nane>Connect or Cl assNane</ confi g- property- name>
<confi g- property-type>j ava. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>org. hornetq. core.renoting.inpl.invm | nVMionnect or Fact ory</ conf| g- property
</ confi g- property>
<confi g- property>
<descri pti on>The transport configurati on. These values nust be in the form of key=val| key=val; </
<confi g- property-nane>Connect i onPar anet er s</ conf i g- pr operty- name>
<confi g- property-type>j ava. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>server-i d=0</confi g- property-val ue>
</ confi g- property>

<out bound- r esour ceadapt er >
<connecti on-definition>
<managedconnecti onf act ory- cl ass>or g. hor net g. r a. Hor net QRAManagedConnect i on
Fact or y</ managedconnect i onf act ory- cl ass>

<confi g- property>
<descri pti on>The default session type</description>
<confi g- property-nane>Sessi onDef aul t Type</ confi g- property- name>
<confi g- property-type>j ava. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>j avax. j ms. Queue</ confi g- property-val ue>

</ confi g- property>

<confi g- property>
<description>Try to obtain a |lock within specified nunmber of seconds; |ess
than or equal to O disable this functionality</description>
<confi g- property- nane>UseTr yLock</ confi g- property- name>
<confi g- property-type>java.l ang. | nt eger </ confi g-property-type>
<confi g- property-val ue>0</ confi g- property-val ue>

</ confi g- property>

<connectionfactory-interface>org. hornetq. ra. Hor net QRAConnect i onFact ory
</ connecti onfactory-interface>

<connecti onf act or or g. hor net g. r a. Hor net QConnect i onFact or yl npl onFact or yl npl
</ connecti onfactory-inpl -cl ass>
<connection-interface>j avax. | ns. Sessi on</ connecti on-i nt erface>

125

Application Server Integration and Java EE

<connection-i npl - cl ass>or g. hor net g. r a. Hor net QRASessi on
</ connecti on-i npl - cl ass>
</ connecti on-definition>
<transacti on- support >XATr ansact i on</transacti on- support >
<aut henti cati on- mechani sn»
<aut henti cati on- mechani smt ype>Basi cPasswor d
</ aut henti cati on- mechani smtype>
<credential -i nterface>j avax. resource. spi . security. PasswordCredentia
</credential -interface>
</ aut henti cati on- nechani sn»
<r eaut henti cati on- support >fal se</reaut henti cati on- support >
</ out bound- r esour ceadapt er >

<i nbound- r esour ceadapt er >
<messageadapt er >
<nessagel i st ener >
<messagel i st ener -t ype>j avax. j ms. MessageLi st ener </ nessagel i st ener -t ype>
<activati onspec>
<activati onspec-cl ass>org. hornetq.ra.infl ow Hornet QActi vati onSpec
</ activationspec-cl ass>
<requi red-confi g- property>
<confi g- property-nane>desti nati on</confi g- property-name>
</required-config-property>
</ activati onspec>
</ messagel i st ener >
</ messageadapt er >
</ i nbound-r esour ceadapt er >

</ resour ceadapt er >

There are three main parts to this configuration.
1. A setof global properties for the adapter

2. The configuration for the outbound part of the adapter. This is used for creating JM S resources within EE
components.

3. The configuration of the inbound part of the adapter. Thisis used for controlling the consumption of messages
viaMDBs.

32.3.1. Global Properties

Thefirst element you seeisresour ceadapt er - cl ass which should be left unchanged. Thisis the HornetQ resource
adapter class.

After that thereis alist of configuration properties. This will be where most of the configuration is done. The first
two properties configure the transport used by the adapter and the rest configure the connection factory itself.

Note

All connection factory properties will use the defaults if they are not provided, except for the
reconnect At t enpt s which will default to -1. This signifies that the connection should attempt to reconnect
on connection failure indefinitely. Thisis only used when the adapter is configured to connect to a remote
server asan InVM connector can never fail.

126

Application Server Integration and Java EE

The following table explains what each property isfor.

Table 32.1. Global Configuration Properties

Property Name Property Type Property Description

ConnectorClassName String The Connector class name (see
Chapter 16 for more information)

ConnectionParameters String The transport configuration. These
parameters must be in the form of
keyl=val 1; key2=val 2; andwill be
specific to the connector used

useL ocal Tx boolean True will enable local transaction
optimisation.

UserName String The user name to use when making
aconnection

Password String The password to use when making
aconnection

BackupConnectorClassName String The backup transport to use in case
of failure of the live node

BackupConnectionParameters String The backup transport configuration
parameters

DiscoveryAddress String The discovery group address to use
to autodetect a server

DiscoveryPort Integer The port to use for discovery

DiscoveryRefreshTimeout Long The timeout, in milliseconds, to
refresh.

Discoverylnitia WaitTimeout Long The initial time to wait for
discovery.

ConnectionL oadBalancingPolicyClasSitamge The load balancing policy class to
use.

ConnectionTTL Long The time to live (in milliseconds)
for the connection.

CdlTimeout Long the call timeout (in milliseconds)
for each packet sent.

DupsOK BatchSize Integer the batch size (in bytes) between
acknowledgements when using
DUPS_OK_ACKNOWLEDGE
mode

127

Application Server Integration and Java EE

Continued..

TransactionBatchSize Integer the batch size (in bytes) between
acknowledgements when using a
transactional session

ConsumerWindowSize Integer the window size (in bytes) for
consumer flow control

ConsumerMaxRate Integer the fastest rate a consumer may
consume messages per second

ConfirmationWindowSize Integer the window size (in bytes) for
reattachment confirmations

ProducerMaxRate Integer the maximum rate of messages per
second that can be sent

MinLargeM essageSize Integer the size (in bytes) before a message
istreated aslarge

BlockOnAcknowledge Boolean whether or not messages are
acknowledged synchronously

BlockOnNonDurableSend Boolean whether or not non-durable
messages are sent synchronously

BlockOnDurableSend Boolean whether or not durable messagesare
sent synchronously

AutoGroup Boolean whether or not message grouping is
automatically used

PreAcknowledge Boolean whether messages are pre
acknowledged by the server before
sending

ReconnectAttempts Integer maximum number of retry attempts,
default for the resource adpater is-1
(infinite attempts)

RetrylInterval Long the time (in milliseconds) to retry a
connection after failing

RetryIntervalMultiplier Double multiplier to apply to successive
retry intervals

FailoverOnServerShutdown Boolean If true client will reconnect to
another server if available

ClientID String the pre-configured client ID for the
connection factory

128

Application Server Integration and Java EE

ClientFailureCheckPeriod Long the period (in ms) after which the
client will consider the connection
failed after not receiving packets
from the server

UseGlobalPools Boolean whether or not to use aglobal thread
pool for threads

Schedul edThreadPoolMaxSize Integer the size of the scheduled thread
pool

ThreadPoolMaxSize Integer the size of the thread pool

32.3.2. Adapter Outbound Configuration

The outbound configuration should remain unchanged as they define connection factories that are used by Java
EE components. These Connection Factories can be defined inside a configuration file that matches the name * -

ds. xni . You'l find a default j ms- ds. xni configuration under the hor net q directory in the JBoss AS deployment.
The connection factories defined in this file inherit their properties from the mainra. xmi configuration but can also
be overridden. The following example shows how to override them.

Note

Please note that this configuration only applies when HornetQ resource adapter is instaled in JBoss
Application Server. If you are using another JEE application server please refer to your application servers
documentation for how to do this.

<t x- connecti on-factory>
<j ndi - nane>Renot eJns XA</ j ndi - name>
<xa-transaction/>
<rar-nanme>j ns-ra.rar</rar-name>
<connecti on-definition>org. hornetq. ra. Hor net QRAConnect i onFact ory
</ connecti on-definition>
<confi g-property nane="Sessi onDef aul t Type" type="String">j avax.j nms. Topi c
</ confi g- property>
<confi g- property nane="Connect or Cl assNane" type="String">
org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory
</ confi g- property>
<confi g- property nane="Connecti onParaneters" type="String">
por t =5445</ conf i g- pr operty>
<max- pool - si ze>20</ max- pool - si ze>
</ tx-connection-factory>

In this example the connection factory will be bound to JNDI with the name Renot eJms XA and can be looked up in
the usual way using JNDI or defined within the EJB or MDB as such:

@Resour ce(mappedNane="j ava: / Renot eJns XA")
private ConnectionFactory connecti onFactory;

The confi g- property elements are what overrides those in the ra. xm configuration file. Any of the elements
pertaining to the connection factory can be overridden here.

129

Application Server Integration and Java EE

The outbound configuration also defines additional propertiesin addition to the global configuration properties.

Table 32.2. Outbound Configuration Properties

Property Name Property Type Property Description
SessionDefaultType String the default session type
UseTryLock Integer try to obtain alock within specified

number of seconds. less than or
equal to O disable this functionality

32.3.3. Adapter Inbound Configuration

The inbound configuration should again remain unchanged. This controls what forwards messages onto MDBs. It is
possible to override properties on the MDB by adding an activation configuration to the MDB itself. This could be
used to configure the MDB to consume from a different server.

The inbound configuration also defines additional properties in addition to the global configuration properties.

130

Application Server Integration and Java EE

Table 32.3. Inbound Configuration Properties

Property Name Property Type Property Description

Destination String JNDI name of the destination

DestinationType String type of the destination,
either j avax. | ms. Queue or

javax.jms.Topic (default s
javax.jms.Queue)

AcknowledgeMode String The Acknowledgment maode, either
Aut o- acknowl edge Or Dups- ok-
acknow edge (default is Auto-
acknowledge). AUTO ACKNOW.EDGE
and DUPS_OK_ACKNOW.EDGE are
acceptable values.

MaxSession Integer Maximum number of session
created by this inbound
configuration (default is 15)

M essageSel ector String the message selector of the
consumer

SubscriptionDurability String Type of the subscription, either
Dur abl e OF NonDur abl e

SubscriptionName String Name of the subscription

TransactionTimeout Long The transaction timeout in

milliseconds (default is 0, the
transaction does not timeout)

UseINDI Boolean Whether or not use INDI to look up
the destination (default istrue)

32.3.4. Configuring the adapter to use a standalone HornetQ Server

Sometime you may want your messaging server on a different machine or separate from the application server.
To do thisyou will need to configure both the incoming and outgoing adapter.

To configure MDB's to consume messages from a remote HornetQ server you need to configure the raxml file
which can befound under depl oy/ hor net - r a. r ar / META- | NF. Simply configure the transport to use a netty connector
(instead of the invm connector) and configure its transport params. Heres an example of what this would look like:

<r esour ceadapt er - cl ass>or g. hor net g. r a. Hor net QResour ceAdapt er </ r esour ceadapt er - cl ass>
<confi g- property>
<descri pti on>The transport type</description>
<confi g- property- nane>Connect or Cl assNane</ conf i g- pr operty- nane>

131

Application Server Integration and Java EE

<confi g- property-type>j ava. |l ang. Stri ng</confi g-property-type>

<confi g- property-val ue>org. hornetq.core.remoting.inpl.netty. NettyConnect or Fact ory</ conf
</ confi g- property>
<confi g- property>

<descri pti on>The transport configuration. These val ues nust be in the form of| key=val ; ke

<confi g- property- nanme>Connect i onPar anmet er s</ conf i g- pr opert y- name>

<confi g- property-type>j ava. |l ang. Stri ng</confi g-property-type>

<confi g- property-val ue>host =127. 0. 0. 1; por t =5446</ conf i g- pr operty- val ue>
</ confi g- property>

This configures the resource adapter to connect to a server running on localhost listening on port 5446

Y ou will also need to configure any outbound connections to also connect to this server. This can be done by either
configuring the jms-ds.xml file found under depl oy/ hor net q. sar or creating a new configuration file and making
sure the filename ends in -ds.xml

The following example shows a sample configuration

<t x- connecti on-factory>
<j ndi - nane>Renot eJns XA</ j ndi - name>
<xa-transaction/>
<rar - name>hornetg-ra. rar</rar-nanme>
<connecti on-definition>org. hornetg. ra. Hor net QRAConnect i onFact or y</ connecti on-defji ni ti on>
<confi g- property nane="Sessi onDef aul t Type" type="java.l ang. String">j avax.j nms. Topi c</ confi g-
<confi g- property nane="ConnectorC assNane" type="java.lang. String">org. hornetq.core.renotir
<confi g-property nane="Connecti onParaneters" type="java.lang. String">host=127.0.0. 1; port =54
<max- pool - si ze>20</ max- pool - si ze>
</t x-connection-factory>

Again thiswill connect to the HornetQ server running on localhost and listening on port 5446. JEE components can
access thisby using JINDI and looking up j ava: / Renot eJns XA

32.4. High Availability JNDI (HA-JNDI)

If you are using JNDI to look-up JM S queues, topics and connection factories from a cluster of servers, it islikely
you will want to use HA-JNDI so that your JNDI look-ups will continue to work if one or more of the serversin
the cluster fail.

HA-JINDI is a JBoss Application Server service which allows you to use JINDI from clients without them having to
know the exact JINDI connection details of every server inthe cluster. This serviceisonly availableif using acluster
of JBoss Application Server instances.

To useit use the following properties when connecting to JNDI.

Hasht abl e<String, String> jndi Paraneters = new Hashtabl e<String, String>();

j ndi Paraneters. put ("j ava. nam ng. factory.initial"
"org.jnp.interfaces. Nanm ngCont ext Factory");

j ndi Paramet ers. put ("] ava. nam ng. factory. url . pkgs="
"org.jboss. nam ng: org.jnp.interfaces");

132

Application Server Integration and Java EE

initial Context = new | nitial Context(jndiParaneters); ‘

For more information on using HA-JNDI see the JBoss Application Server clustering documentation [http://
www.jboss.org/file-access/def ault/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html]

32.5. XA Recovery

XA recovery deals with system or application failures to ensure that of a transaction are applied consistently to all
resources affected by the transaction, even if any of the application processes or the machine hosting them crash
or lose network connectivity. For more information on XA Recovery,please refer to JBoss Transactions [http://
www.jboss.org/community/wiki/JBossTransactions].

When HornetQ is integrated with JBoss AS, it can take advantage of JBoss Transactions to provide recovery of
messaging resources. If messagesareinvolvedinaXA transaction, inthe event of aserver crash, therecovery manager
will ensure that the transactions are recovered and the messages will either be committed or rolled back (depending
on the transaction outcome) when the server isrestarted.

32.5.1. XA Recovery Configuration

To enable HornetQ's XA Recovery, the Recovery Manager must be configured to connect to HornetQ to recover
its resources. The following property must be added to the j t a section of conf/j bossts-properties. xm of JBOSS
AS profiles:

<properties depends="arjuna" name="jta">

<property nane="com arjuna.ats.jta.recovery. XAResour ceRecovery. Hor net QL"
val ue="org. hornetq.j ms. server. recovery. Hor net QXAResour ceRecovery; [connecti on configuratic
</ properties>

The[connection configuration] containsall theinformation required to connect to HornetQ node under the form

[connector factory class nane],[user nane], [password], [connector paraneters].

e [connector factory class name] corresponds to the name of the ConnectorFactory used to
connect to HornetQ. Values can be org. hornetq. core. renoting.inpl.invm | nVMConnect or Factory OfF
org. hornetq. core.renoting.inpl.netty. NettyConnectorFactory

e [user nane] istheuser nameto create aclient session. It is optional
e [password] isthe password to create aclient session. It is mandatory only if the user name is specified

e [connector paraneters] isalist of comma-separated key=value pair which are passed to the connector factory
(see Chapter 16 for alist of the transport parameters).

Note

HornetQ must have a valid acceptor which corresponds to the connector specified in conf/j bossts-

properties.xm.

133

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html
http://www.jboss.org/community/wiki/JBossTransactions

Application Server Integration and Java EE

32.5.1.1. Configuration Settings

If HornetQ is configured with a default in-vm acceptor:

<acceptor nanme="in-vni>
<factory-class>org. hornetq. core.renoting.inpl.invm | nVMAccept or Fact ory</factory-cl ass>
</ accept or >

the corresponding configuration in conf / j bosst s- properti es. xm iS:

<property name="com arjuna.ats.jta.recovery. XAResour ceRecovery. HORNETQL"
val ue="org. hornetq.jns. server.recovery. Hor net QXAResour ceRecovery; org. hornetq. core.renoting.inpl.invml

If it is now configured with a netty acceptor on a non-default port:

<acceptor nane="netty">
<factory-class>org. hornetq.core.renoting.inpl.netty. NettyAcceptorFactory</factory-class>
<par am key="port" val ue="8888"/>

</ accept or >

the corresponding configuration in conf / j bosst s- properties. xm is:

<property nane="com arjuna.ats.jta.recovery. XAResour ceRecovery. HORNETQL"
val ue="org. hornetq.j ms. server. recovery. Hor net QXAResour ceRecovery; org. hor net g. core. renot | ng. i npl . ne

Note
Note the additional commasto skip the user and password before connector parameters

If the recovery must use adni n, adni npass, the configuration would have been:

<property nane="com arjuna.ats.jta.recovery. XAResour ceRecovery. HORNETQL"
val ue="org. hornetq.j ms. server. recovery. Hor net QXAResour ceRecovery; org. hor net g. c

Configuring HornetQ with an invm acceptor and configuring the Recovery Manager with an invm connector is the
recommended way to enable XA Recovery.

32.5.2. Example

See Section 11.3.9 which shows how to configure XA Recovery and recover messages after a server crash.

134

33

The JMS Bridge

HornetQ includes afully functional IMS message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send them to a target queue
or topic, typically on adifferent server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for reliably sending
messages from one cluster to another, for instance across a WAN, and where the connection may be unreliable.

A bridge can be deployed as a standal one application, with HornetQ standalone server or inside aJBoss AS instance.
The source and the target can be located in the same virtual machine or another one.

The bridge can aso be used to bridge messages from other non HornetQ JMS servers, aslong asthey are IMS 1.1
compliant.

Note

Do not confuse a JMS bridge with a core bridge. A JMS bridge can be used to bridge any two JMS 1.1
compliant IMS providers and uses the IMS API. A core bridge (described in Chapter 36) is used to bridge
any two HornetQ instances and uses the core API. Always use acore bridgeif you canin preferencetoaJMS
bridge. The core bridge will typically provide better performance than a IMS bridge. Also the core bridge
can provide once and only once delivery guarantees without using XA.

The bridge has built-in resilience to failure so if the source or target server connection is lost, e.g. due to network
failure, the bridge will retry connecting to the source and/or target until they come back online. When it comes back
onlineit will resume operation as normal.

The bridge can be configured with an optional IMS selector, so it will only consume messages matching that IMS
selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can be configured to
consume using a non durable or durable subscription

Typically, the bridge is deployed by the JBoss Micro Container via a beans configuration file. This would typically
be deployed inside the JBoss Application Server and the following example shows an example of a beans file that
bridges 2 destinations which are actually on the same server.

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oynment xm ns="ur n:j boss: bean-depl oyer: 2. 0">

<bean nane="JMSBri dge" class="org. hornetq.api.jns.bridge.inpl.JMSBridgelnpl">
<l-- HornetQ nust be started before the bridge -->

135

The IMS Bridge

<depends>Hor net Ser ver </ depends>
<constructor>
<I'-- Source ConnectionFactory Factory -->
<par anet er >
<i nj ect bean="SourceCFF"/>
</ par anet er >
<l-- Target ConnectionFactory Factory -->
<par anet er >
<i nj ect bean="Target CFF"/>
</ par anet er >
<l-- Source DestinationFactory -->
<par anet er >
<i nj ect bean="SourceDesti nati onFactory"/>
</ par anet er >
<I-- Target DestinationFactory -->
<par anet er >
<i nj ect bean="Target Desti nati onFactory"/>
</ par anet er >
<l-- Source User Nane (no usernane here) -->
<par anet er ><nul | /></ par anet er >
<l-- Source Password (no password here)-->
<par anet er ><nul | /></ par anet er >
<l-- Target User Nane (no usernane here)-->
<par anet er ><nul | /></ par anet er >
<l-- Target Password (no password here)-->
<par anet er ><nul | /></ par anet er >
<l-- Selector -->
<par anet er ><nul | /></ par anet er >
<l-- Failure Retry Interval (in ns) -->
<par anet er >5000</ par anet er >
<I-- Max Retries -->
<par anet er >10</ par anet er >
<I-- Quality O Service -->
<par anet er >ONCE_AND_ONLY_ONCE</ par anet er >
<I-- Max Batch Size -->
<par anet er >1</ par anet er >

<I-- Max Batch Tinme (-1 neans infinite) -->

<par anet er >- 1</ par anet er >

<l-- Subscription name (no subscription nanme here)-->
<par anet er ><nul | /></ par anet er >

<l-- dient ID (no client ID here)-->

<par anet er ><nul | /></ par anet er >
<l-- Add Messagel D In Header -->
<par anet er >t r ue</ par anet er >
<I-- register the JM5 Bridge in the AS MBeanServer -->
<par anet er >
<i nj ect bean="MBeanServer"/>
</ par anet er >
<par anet er >or g. hor net q: servi ce=JVMSBr i dge</ par anet er >
</ const ructor >
<property nane="transacti onManager" >
<i nj ect bean="Real Transacti onManager"/ >
</ property>
</ bean>

<l -- SourceCFF describes the ConnectionFactory used to connect to the
source destination -->

136

The IMS Bridge

<bean name=" Sour ceCFF"
cl ass="org. hornetq. api . jns. bri dge. i npl . JNDI Connect i onFact or yFact ory" >
<const ructor>
<par anet er >
<i nj ect bean="JND " />
</ par anet er >
<par anet er >/ Connect i onFact or y</ par anet er >
</ constructor >
</ bean>

<l -- Target CFF descri bes the ConnectionFactory used to connect to the
target destination -->
<bean nane="Tar get CFF"
cl ass="org. hornetq. api . jns. bri dge. i npl . JNDI Connect i onFact or yFact ory" >
<constructor >
<par anet er >
<i nj ect bean="JNDI " />
</ par anet er >
<par anet er >/ Connect i onFact or y</ par anet er >
</ constructor >
</ bean>

<l -- SourceDestinationFactory describes the Destination used as the source -->
<bean name="Sour ceDesti nati onFactory"
cl ass="org. hornetq. api.jns. bridge.inpl.JNDl DestinationFactory">
<constructor>
<par anet er >
<inject bean="JND" />
</ par anet er >
<par anet er >/ queue/ sour ce</ par anet er >
</ constructor>
</ bean>

<l-- TargetDestinationFactory describes the Destination used as the target -->
<bean nane="Tar get Desti nati onFact ory"
cl ass="org. hornetq. api .j ns. bridge.inpl.JND Destinati onFactory">
<const ructor>
<par anet er >
<inject bean="JND" />
</ par anet er >
<par anet er >/ queue/ t ar get </ par anet er >
</ constructor>
</ bean>

<I-- JNDI is a Hashtable containing the JNDI properties required -->
<I-- to connect to the sources and targets JMS resrouces -->
<bean nane="JNDI" cl ass="j ava. util.Hashtabl e">
<constructor class="java.util.Mp">
<map class="java. util.Hashtable" keyd ass="String"
val ueCl ass="String">
<entry>
<key>j ava. nam ng.factory.initial </ key>
<val ue>org. j np.interfaces. Nam ngCont ext Fact or y</ val ue>
</entry>
<entry>
<key>j ava. nam ng. provi der. url </ key>
<val ue>j np://1 ocal host: 1099</ val ue>

137

The IMS Bridge

</entry>

<entry>
<key>j ava. nani ng. factory. url . pkgs</ key>
<val ue>org. j boss. nam ng: org.j np.interfaces"</val ue>

</entry>

</ map>
</ constructor >
</ bean>

<bean nane="MBeanServer" class="] avax. managenent. MBeanServer">
<constructor factoryC ass="org.jboss.nx.util.MeanServerLocator"
fact oryMet hod="1| ocat eJBoss"/ >
</ bean>
</ depl oyment >

33.1. JMS Bridge Parameters

The main bean deployed isthe JvsBri dge bean. The bean is configurable by the parameters passed to its constructor.

Note

To let aparameter be unspecified (for example, if the authentication is anonymous or no message selector is
provided), use <nul I /> for the unspecified parameter value.

» Source Connection Factory Factory

This injects the SourceCFF bean (also defined in the beans file). This bean is used to create the source

Connecti onFactory
» Target Connection Factory Factory

This injects the Target CFF bean (also defined in the beans file). This bean is used to create the target

Connecti onFactory
e Source Destination Factory Factory

Thisinjectsthe Sour ceDest i nat i onFact ory bean (also defined in the beansfile). This bean is used to create the
source Desti nati on

» Target Destination Factory Factory

Thisinjectsthe Tar get Dest i nat i onFact ory bean (also defined in the beansfile). This bean is used to create the
target Desti nati on

e Source User Name

this parameter is the username for creating the source connection
» Source Password

this parameter is the parameter for creating the source connection

e Target User Name

138

The IMS Bridge

this parameter isthe username for creating the target connection
Target Password

this parameter is the password for creating the target connection
Selector

This represents a IMS selector expression used for consuming messages from the source destination. Only
messages that match the selector expression will be bridged from the source to the target destination

The selector expression must follow the IMS selector syntax [http://java.sun.com/j2ee/1.4/docs/api/javax/jms/
Message.html]

Failure Retry Interval

This represents the amount of time in ms to wait between trying to recreate connections to the source or target
servers when the bridge has detected they have failed

Max Retries

This represents the number of times to attempt to recreate connections to the source or target servers when the
bridge has detected they have failed. The bridge will give up after trying this number of times. - 1 represents 'try
forever'

Quality Of Service

This parameter represents the desired quality of service mode
Possible values are:

e AT_MOST_ONCE

* DUPLI CATES X

* ONCE_AND_ONLY_ONCE

See Section 33.4 for a explanation of these modes.

Max Batch Size

This represents the maximum number of messages to consume from the source destination before sending them
in abatch to the target destination. Its value must >= 1

Max Batch Time

This represents the maximum number of milliseconds to wait before sending abatch to target, even if the number
of messages consumed has not reached MaxBat chSi ze. Its value must be - 1 to represent 'wait forever', or >= 1
to specify an actual time

Subscription Name

139

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

The IMS Bridge

If the source destination represents a topic, and you want to consume from the topic using a durabl e subscription
then this parameter represents the durabl e subscription name

* ClientID

If the source destination represents a topic, and you want to consume from the topic using a durable subscription
then this attribute represents the the IMS client 1D to use when creating/looking up the durable subscription

* Add Messagel D In Header

If true, then the original message's message ID will be appended in the message sent to the destination in
the header HORNETQ BRI DGE_MSG | D_LI ST. If the message is bridged more than once, each message ID will be
appended. This enables a distributed request-response pattern to be used

Note

when you receive the message you can send back a response using the correlation id of the first messageid,
so when the original sender getsit back it will be able to correlate it.

* MBean Server

To manage the IMS Bridge using IM X, set the MBeanServer where the JIM S Bridge MBean must be registered
(e.g. the WM Platform MBeanServer or JBoss AS MBeanServer)

e ObjectName

If you set the MBeanServer, you also need to set the ObjectName used to register the IMS Bridge MBean (must
be unique)

33.2. Source and Target Connection Factories

The source and target connection factory factories are used to create the connection factory used to create the
connection for the source or target server.

The configuration example above uses the default implementation provided by HornetQ that 1ooks up the connection
factory using JNDI. For other Application Serversor JM S providers a new implementation may have to be provided.
This can easily be done by implementing the interface or g. hor net g. j ns. bri dge. Connect i onFact or yFact ory.

33.3. Source and Target Destination Factories

Again, similarly, these are used to create or |lookup up the destinations.

In the configuration example above, we have used the default provided by HornetQ that looks up the destination
using JNDI.

A new implementation can be provided by implementing or g. hor net g. j ms. bri dge. Dest i nat i onFact ory interface.

33.4. Quality Of Service

140

The IMS Bridge

The quality of service modes used by the bridge are described here in more detail.
33.4.1. AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The messages are consumed
from the source and acknowledged before sending to the destination. Therefore there is a possibility that if failure
occurs between removing them from the source and them arriving at the destination they could be lost. Hence delivery
will occur at most once.

This mode is available for both durable and non-durable messages.
33.4.2. DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged after they have been
successfully sent to the destination. Thereforethereisapossibility that if failure occurs after sending to the destination
but before acknowledging them, they could be sent again when the system recovers. |.e. the destination might receive
duplicates after afailure.

This mode is available for both durable and non-durable messages.
33.4.3. ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only once. (Sometimes this
mode is known as "exactly once"). If both the source and the destination are on the same HornetQ server instance
then this can be achieved by sending and acknowledging the messages in the same local transaction. If the source
and destination are on different servers this is achieved by enlisting the sending and consuming sessions in a JTA
transaction. The JTA transactioniscontrolled by JBoss Transactions JTA * implementationwhichisafully recovering
transaction manager, thus providing avery high degree of durability. If JTA isrequired then both supplied connection
factories need to be XA ConnectionFactory implementations. Thisis likely to be the slowest mode since it requires
extra persistence for the transaction logging.

Thismodeis only available for durable messages.

Note

For a specific application it may possible to provide once and only once semantics without using the
ONCE_AND_ONLY_ONCE QoS level. This can be done by using the DUPLICATES OK mode and then
checking for duplicates at the destination and discarding them. Some JM S servers provide automatic duplicate
message detection functionality, or thismay be possible to implement on the application level by maintaining
acache of received message ids on disk and comparing received messages to them. The cache would only be
valid for a certain period of time so this approach is not as watertight asusing ONCE_AND_ONLY_ONCE
but may be a good choice depending on your specific application.

33.4.4. Examples

Please see Section 11.3.5 which shows how to configure and use a JMS Bridge with JBoss AS to send messages to
the source destination and consume them from the target destination.

141

The IMS Bridge

Please see Section 11.1.20 which shows how to configure and use a M S Bridge between two standal one HornetQ
Servers.

142

34

Client Reconnection and Session Reattachment

HornetQ clients can be configured to automatically reconnect or re-attach to the server in the event that afailureis
detected in the connection between the client and the server.

34.1. 100% Transparent session re-attachment

If the failure was due to some transient failure such as a temporary network failure, and the target server was not
restarted, then the sessions will still be existent on the server, asssuming the client hasn't been disconnected for more
than connection-ttl Chapter 17.

In this scenario, HornetQ will automatically re-attach the client sessions to the server sessions when the connection
reconnects. Thisis done 100% transparently and the client can continue exactly asif nothing had happened.

The way thisworksis asfollows:

AsHornetQ clients send commandsto their serversthey store each sent command in anin-memory buffer. In the case
that connection failure occurs and the client subsequently reattaches to the same server, as part of the reattachment
protocol the server informs the client during reattachment with the id of the last command it successfully received
from that client.

If the client has sent more commands than were received before failover it can replay any sent commands from its
buffer so that the client and server can reconcile their states.

The size of this buffer is configured by the Confirmati onW ndowSi ze parameter, when the server has received
Confi rmati onW ndowSi ze bytes of commands and processed them it will send back a command confirmation to the
client, and the client can then free up space in the buffer.

If you are using JM'S and you're using the JM S service on the server to load your JMS connection factory instances
into JNDI then this parameter can be configured in hor net g-j ms. xn using the element conf i r mat i on- wi ndow si ze
a. If you're using JM S but not using JINDI then you can set these values directly on the Hor net QConnect i onFact ory
instance using the appropriate setter method.

If you're using core you can set these values directly on the d i ent Sessi onFact ory instance using the appropriate
setter method.

The window is specified in bytes.

Setting this parameter to - 1 disables any buffering and prevents any re-attachment from occurring, forcing reconnect
instead. The default value for this parameter is- 1. (Which means by default no auto re-attachment will occur)

34.2. Session reconnection

143

Client Reconnection and Session Reattachment

Alternatively, the server might have actually been restarted after crashing or being stopped. In this case any sessions
will no longer be existent on the server and it won't be possible to 100% transparently re-attach to them.

In this case, HornetQ will automatically reconnect the connection and recreate any sessions and consumers on the
server corresponding to the sessions and consumers on the client. This process is exactly the same as what happens
during failover onto a backup server.

Client reconnection is also used internally by components such as core bridges to allow them to reconnect to their
target servers.

Please see the section on failover Section 39.2.1 to get a full understanding of how transacted and non-transacted
sessions are reconnected during failover/reconnect and what you need to do to maintain once and only once delivery
guarantees.

34.3. Configuring reconnection/reattachment attributes

Client reconnection is configured using the following parameters:

* retry-interval . Thisoptional parameter determinesthe period in milliseconds between subsequent reconnection
attempts, if the connection to the target server has failed. The default value is 2000 milliseconds.

e retry-interval -nul tiplier. Thisoptiona parameter determines determines a multiplier to apply to the time
since the last retry to compute the time to the next retry.

This alows you to implement an exponential backoff between retry attempts.
Let's take an example:

If wesetretry-interval t01000 msandwesetretry-interval -nultiplier to2. 0, then, if the first reconnect
attempt fails, we will wait 1000 msthen 2000 ms then 4000 ms between subsequent reconnection attempts.

The default valueis 1. 0 meaning each reconnect attempt is spaced at equal intervals.

e max-retry-interval . Thisoptional parameter determines the maximum retry interval that will be used. When
settingretry-interval -mul ti pli er itwould otherwise be possiblethat subsequent retriesexponentially increase
to ridiculously large values. By setting this parameter you can set an upper limit on that value. The default value
is2000 milliseconds.

* reconnect-attenpts. Thisoptional parameter determinesthe total number of reconnect attemptsto make before
giving up and shutting down. A value of - 1 signifies an unlimited number of attempts. The default valueiso.

If you're using IMS, and you're using the IMS Service on the server to load your IM S connection factory instances
directly into JNDI, then you can specify these parametersin the xml configurationin hor net g-j ms. xmi , for example:

<connection-factory nane="Connecti onFactory">
<connect or s>
<connect or-ref connector-name="netty"/>
</ connect or s>
<entries>
<entry name="Connecti onFactory"/>

144

Client Reconnection and Session Reattachment

<entry nane="XAConnecti onFactory"/>
</entries>
<retry-interval >1000</retry-interval >
<retry-interval-nmultiplier>1l.5</retry-interval-nultiplier>
<max-retry-interval >60000</ max-retry-interval >
<reconnect - at t enpt s>1000</ r econnect - at t enpt s>
</ connection-factory>

If you'reusing JMS, but instantiating your JM S connection factory directly, you can specify the parameters using the
appropriate setter methods on the Hor net QConnect i onFact ory immediately after creating it.

If you're using the core API and instantiating the d i ent Sessi onFact ory instance directly you can also specify the
parameters using the appropriate setter methods on the d i ent Sessi onFact ory immediately after creating it.

If your client does manage to reconnect but the session is ho longer available on the server, for instance if the server
has been restarted or it has timed out, then the client won't be able to re-attach, and any Except i onLi st ener Or
Fai | ur eLi st ener instances registered on the connection or session will be called.

34.4. ExceptionListeners and SessionFailureListeners

Please note, that when a client reconnects or re-attaches, any registered JMS Excepti onLi st ener or core AP
Sessi onFai | ur eLi st ener will be caled.

145

35

Diverting and Splitting Message Flows

HornetQ allows you to configure objects called diverts with some simple server configuration.

Diverts allow you to transparently divert messages routed to one address to some other address, without making any
changes to any client application logic.

Diverts can be exclusive, meaning that the message is diverted to the new address, and does not go to the old address
at al, or they can be non-exclusive which means the message continues to go the old address, and a copy of itisalso
sent to the new address. Non-exclusive diverts can therefore be used for splitting message flows, e.g. there may be
arequirement to monitor every order sent to an order queue.

Diverts can aso be configured to have an optional message filter. If specified then only messages that match the
filter will be diverted.

Diverts can also be configured to apply a Tr ansf or ner . If specified, all diverted messages will have the opportunity
of being transformed by the Tr ansf or ner .

A divert will only divert a message to an address on the same server, however, if you want to divert to an address
on a different server, a common pattern would be to divert to alocal store-and-forward queue, then set up a bridge
which consumes from that queue and forwards to an address on a different server.

Divertsarethereforeavery sophisticated concept, which when combined with bridges can be used to create interesting
and complex routings. The set of diverts on a server can be thought of as a type of routing table for messages.
Combining diverts with bridges allows you to create a distributed network of reliable routing connections between
multiple geographically distributed servers, creating your global messaging mesh.

Diverts are defined as xml in the hor net g- confi gur ati on. xm file. There can be zero or more divertsin thefile.
Please see Section 11.1.13 for afull working example showing you how to configure and use diverts.

Let'stake alook at some divert examples:

35.1. Exclusive Divert

Let'stake alook at an exclusive divert. An exclusive divert diverts all matching messages that are routed to the old
address to the new address. Matching messages do not get routed to the old address.

Here's some example xml configuration for an exclusive divert, it's taken from the divert example:

<di vert nanme="prices-divert">

146

Diverting and Splitting Message Flows

<addr ess>j ms. t opi c. pri ceUpdat es</ addr ess>
<f or war di ng- addr ess>j nms. queue. pri ceFor war di ng</ f or war di ng- addr ess>
<filter string="office="New York'"/>
<transf or mer - cl ass- name>
org. hornetg. j nms. exanpl e. AddFor war di ngTi meTr ansf or ner
</ transf orner - cl ass- name>
<excl usi ve>t rue</ excl usi ve>
</ divert>

We define a divert caled 'prices-divert' that will divert any messages sent to the address
' ms. t opi c. pri ceUpdat es' (this correspondsto any messages sent to aJMS Topic called 'pri ceUpdat es') to another
local address'j ns. queue. pri ceForwar di ng' (this correspondsto alocal IMS queue called 'pri ceFor war di ng'

We also specify amessage filter string so only messages with the message property of fi ce with value New Yor k will
get diverted, all other messages will continue to be routed to the normal address. The filter string is optional, if not
specified then all messages will be considered matched.

Inthisexampleatransformer classis specified. Againthisisoptional, and if specified the transformer will be executed
for each matching message. This allows you to change the messages body or properties before it is diverted. In this
example the transformer simply adds a header that records the time the divert happened.

This example is actually diverting messages to a local store and forward queue, which is configured with a bridge
which forwards the message to an address on another HornetQ server. Please see the example for more details.

35.2. Non-exclusive Divert

Now we'll take alook at anon-exclusive divert. Non exclusive diverts are the same as exclusive diverts, but they only
forward a copy of the message to the new address. The original message continues to the old address

Y ou can therefore think of non-exclusive diverts as splitting a message flow.

Non exclusive diverts can be configured in the same way as exclusive diverts with an optional filter and transformer,
here's an example non-exclusive divert, again from the divert example:

<di vert nanme="order-divert">
<addr ess>j ns. queue. or der s</ addr ess>
<f or war di ng- addr ess>j nrs. t opi c. spyTopi c</ f or war di ng- addr ess>
<excl usi ve>f al se</ excl usi ve>

</divert>

The above divert exampl e takes acopy of every message sent to the address'j ms. queue. or der s' (Which corresponds
to aJMS Queue called 'or der s') and sends it to alocal address called 'j ns. t opi c. SpyTopi ¢' (which corresponds to
aJMS Topic called 'spy Topi ¢").

147

36

Core Bridges

Thefunction of abridge isto consume messages from a source queue, and forward them to atarget address, typically
on adifferent HornetQ server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for reliably sending

messages from one cluster to another, for instance across a WAN, or internet and where the connection may be
unreliable.

The bridge has built in resilience to failure so if the target server connection is lost, e.g. due to network failure,
the bridge will retry connecting to the target until it comes back online. When it comes back online it will resume
operation as normal.

In summary, bridges are away to reliably connect two separate HornetQ servers together. With a core bridge both
source and target servers must be HornetQ servers.

Bridges can be configured to provide once and only once delivery guarantees even in the event of the failure of the
source or the target server. They do this by using duplicate detection (described in Chapter 37).

Note

Although they have similar function, don't confuse core bridges with IM S bridges!

Core bridges are for linking a HornetQ node with another HornetQ node and do not usethe IMS API. A IMS
Bridge is used for linking any two JMS 1.1 compliant IMS providers. So, a JIMS Bridge could be used for
bridging to or from different IMS compliant messaging system. It's always preferable to use a core bridge
if you can. Core bridges use duplicate detection to provide once and only once guarantees. To provide the
same guarantee using a JM S bridge you would have to use XA which has a higher overhead and is more
complex to configure.

36.1. Configuring Bridges

Bridges are configured in hor net g- confi gurati on. xn . Let's kick off with an example (this is actually from the
bridge example):

<bri dge name="ny-bri dge">
<queue- nane>j ms. queue. sausage- f act or y</ queue- nane>
<f orwar di ng- addr ess>j ns. queue. ni nci ng- machi ne</ f or war di ng- addr ess>
<filter-string="nane="aardvark'"/>
<transf or mer - cl ass- name>

148

Core Bridges

org. hornet g. j ms. exanpl e. Hat Col our ChangeTr ansf or ner
</ transf orner-cl ass- nanme>
<retry-interval >1000</retry-interval >
<retry-interval-nmultiplier>1.0</retry-interval-nultiplier>
<reconnect - at t enpt s>- 1</ reconnect - at t enpt s>
<f ai | over-on-server-shut down>f al se</f ai | over-on-server - shut down>
<use-dupl i cat e-det ecti on>true</use-duplicate-detection>
<confi rmati on-w ndow si ze>10000000</ conf i r mati on- wi ndow- si ze>
<connect or-ref connect or-name="r enot e- connect or"

backup- connect or - nane="backup- r enot e- connect or"/ >
<user >f oouser </ user >
<passwor d>f oopasswor d</ passwor d>

</ bri dge>

In the above example we have shown all the parameters its possible to configure for a bridge. In practice you might
use many of the defaults so it won't be necessary to specify them all explicitly.

Let'stake alook at all the parametersin turn:
* nane attribute. All bridges must have a unigue name in the server.
* queue- nane. Thisisthe unique name of thelocal queuethat the bridge consumesfrom, it'samandatory parameter.

The queue must already exist by the time the bridge is instantiated at start-up.

Note

If you're using JMS then normally the JMS configuration hornet g-j ms. xni is loaded after the core
configuration file hor net g- confi gurati on. xm isloaded. If your bridge is consuming from a IMS queue
then you'll need to make sure the IMS queueis aso deployed as a core queue in the core configuration. Take
alook at the bridge example for an example of how thisis done.

* forwarding-addr ess. Thisistheaddressonthetarget server that the message will beforwarded to. If aforwarding
address is not specified, then the original address of the message will be retained.

e filter-string. Anoptiona filter string can be supplied. If specified then only messages which match the filter
expression specified in the filter string will be forwarded. The filter string follows the HornetQ filter expression
syntax described in Chapter 14.

e transforner-class-nane. An optional transformer-class-name can be specified. This is the name of a user-
defined class which implementsthe or g. hor net q. core. server. cl uster. Transf or ner interface.

If this is specified then the transformer's t r ansf or n() method will be invoked with the message before it is
forwarded. This gives you the opportunity to transform the message's header or body before forwarding it.

e retry-interval . Thisoptional parameter determinesthe period in milliseconds between subsequent reconnection
attempts, if the connection to the target server has failed. The default value is 2000milliseconds.

e retry-interval-nultiplier. Thisoptiona parameter determines determines a multiplier to apply to the time
since the last retry to compute the time to the next retry.

149

Core Bridges

This allows you to implement an exponential backoff between retry attempts.
Let'stake an example:

If wesetretry-interval t01000 msandwesetretry-interval -mul tiplier to 2.0, then, if thefirst reconnect
attempt fails, we will wait 1000 msthen 2000 msthen 4000 ms between subsegquent reconnection attempts.

The default value is 1. 0 meaning each reconnect attempt is spaced at equal intervals.

reconnect - at t enpt s. Thisoptional parameter determines the total number of reconnect attempts the bridge will
make before giving up and shutting down. A value of - 1 signifies an unlimited number of attempts. The default
valueis- 1.

fail over - on-server - shut down. This optional parameter determines whether the bridge will attempt to failover
onto a backup server (if specified) when the target server is cleanly shutdown rather than crashed.

The bridge connector can specify both alive and abackup server, if it specifies abackup server and this parameter
isset tot rue then if the target server is cleanly shutdown the bridge connection will attempt to failover onto its
backup. If the bridge connector has no backup server configured then this parameter has no effect.

Sometimes you want a bridge configured with a live and a backup target server, but you don't want to failover
to the backup if the live server is simply taken down temporarily for maintenance, this is when this parameter
comes in handy.

The default value for this parameter ist al se.

use- dupl i cat e-det ecti on. This optional parameter determines whether the bridge will automatically insert a
duplicate id property into each message that it forwards.

Doing so, allows the target server to perform duplicate detection on messages it receives from the source server.
If the connection fails or server crashes, then, when the bridge resumesiit will resend unacknowledged messages.
This might result in duplicate messages being sent to the target server. By enabling duplicate detection allows
these duplicates to be screened out and ignored.

This alows the bridge to provide a once and only once delivery guarantee without using heavyweight methods
such as XA (see Chapter 37 for more information).

The default value for this parameter ist r ue.

confirmati on-w ndow si ze. This optional parameter determinesthe confi rmat i on-wi ndow si ze to use for the
connection used to forward messages to the target node. This attribute is described in section Chapter 34

Warning

When using the bridge to forward messages from a queue which has a max-size-bytes set it's important that
confirmation-window-size is less than or egqual to max- si ze- byt es to prevent the flow of messages from
ceasing.

connect or - r ef . This mandatory parameter determines which connector pair the bridge will use to actually make
the connection to the target server.

150

Core Bridges

A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc) as well as the server
connection parameters (host, port etc). For more information about what connectors are and how to configure
them, please see Chapter 16.

Theconnect or - ref element can be configured with two attributes:

e connect or - nane. This references the name of a connector defined in the core configuration file hor net g-
configuration.xm . The bridge will use this connector to make its connection to the target server. This
attribute is mandatory.

e backup- connect or - narme. Thisoptional parameter also referencesthe name of aconnector defined in the core
configuration filehor net g- conf i gurat i on. xm . It represents the connector that the bridge will fail-over onto
if it detects the live server connection has failed. If thisis specified and f ai | over - on- ser ver - shut down iS
set tot rue then it will aso attempt failover onto this connector if the live target server is cleanly shut-down.

user . Thisoptional parameter determines the user name to use when creating the bridge connection to the remote
server. If it is not specified the default cluster user specified by cl ust er-user in hor net g- confi gurati on. xn
will be used.

passwor d. This optional parameter determines the password to use when creating the bridge connection to the
remote server. If it is not specified the default cluster password specified by cl ust er - passwor d in hor net g-
configuration.xm will beused.

151

37

Duplicate Message Detection

HornetQ includes powerful automatic duplicate message detection, filtering out duplicate messages without you
having to code your own fiddly duplicate detection logic at the application level. This chapter will explain what
duplicate detection is, how HornetQ uses it and how and where to configure it.

When sending messages from a client to a server, or indeed from a server to another server, if the target server or
connection fails sometime after sending the message, but before the sender receives a response that the send (or
commit) was processed successfully then the sender cannot know for sure if the message was sent successfully to
the address.

If the target server or connection failed after the send was received and processed but before the response was sent
back then the message will have been sent to the address successfully, but if the target server or connection failed
before the send was received and finished processing then it will not have been sent to the address successfully. From
the senders point of view it's not possible to distinguish these two cases.

When the server recoversthisleavesthe client in adifficult situation. It knows the target server failed, but it does not
know if the last message reached its destination ok. If it decides to resend the last message, then that could result in
a duplicate message being sent to the address. If each message was an order or a trade then this could result in the
order being fulfilled twice or the trade being double booked. Thisis clearly not adesirable situation.

Sending the message(s) in atransaction does not help out either. If the server or connection fails while the transaction
commit is being processed it is also indeterminate whether the transaction was successfully committed or not!

To solve these issues HornetQ provides automatic duplicate messages detection for messages sent to addresses.

37.1. Using Duplicate Detection for Message Sending

Enabling duplicate message detection for sent messages is simple: you just need to set a special property on the
message to aunique value. Y ou can create the value however you like, aslong asit is unique. When the target server
receives the message it will check if that property is set, if it is, then it will check in itsin memory cache if it has
already received a message with that value of the header. If it has received a message with the same value before
then it will ignore the message.

Note

Using duplicate detection to move messages between nodes can give you the same once and only once
delivery guarantees asif you were using an XA transaction to consume messages from source and send them
to the target, but with less overhead and much easier configuration than using XA.

152

Duplicate Message Detection

If you're sending messages in a transaction then you don't have to set the property for every message you send in that
transaction, you only need to set it once in the transaction. If the server detects a duplicate message for any message
in the transaction, then it will ignore the entire transaction.

The name of the property that you set is given by the vaue of
or g. hor net . api . cor e. HDR_DUPLI CATE_DETECTI ON_I D, whichis_HQ DUPL_I D

The value of the property can be of type byt e[] or Si npl eStri ng if you're using the core API. If you're using IMS
it must beast ri ng, and its value should be unique. An easy way of generating aunique id is by generating a UUID.

Here's an example of setting the property using the core API:

Cl i ent Message nessage = session. creat eMessage(true);
Sinpl eString nmyUniquelD = "This is nmy unique id"; /1 Could use a UU D for this

nmessage. set Stri ngProperty(HDR_DUPLI CATE_DETECTI ON_I D, nyUni quel D) ;

And here's an example using the IMS API:

Message j msMessage = session. creat eMessage();
String nmyUniquelD = "This is nmy unique id"; /1 Could use a UU D for this

nmessage. set Stri ngProperty(HDR_DUPLI CATE DETECTI ON_ID.toString(), nyUniquelD);

37.2. Configuring the Duplicate ID Cache

The server maintains caches of received values of the
org. hornet g. cor e. message. i npl . HDR_DUPLI CATE_DETECTI ON_I D property sent to each address. Each address has
its own distinct cache.

The cacheis acircular fixed size cache. If the cache has a maximum size of n elements, thenthen + 1thid stored
will overwrite the oth e ement in the cache.

The maximum size of the cacheis configured by the parameter i d- cache- si ze inhor net g- conf i gurati on. xm , the
default valueis 2000 elements.

153

Duplicate Message Detection

The caches can aso be configured to persist to disk or not. Thisis configured by the parameter per si st -i d- cache,
alsoinhornet g- confi guration. xni . If thisisset tot r ue then each id will be persisted to permanent storage asthey
arereceived. The default value for this parameter ist r ue.

Note

When choosing a size of the duplicate id cache be sure to set it to a larger enough size so if you resend
messages all the previously sent ones are in the cache not having been overwritten.

37.3. Duplicate Detection and Bridges

Core bridges can be configured to automatically add a unique duplicate id value (if there isn't already one in the
message) before forwarding the message to it'starget. This ensuresthat if the target server crashes or the connection
is interrupted and the bridge resends the message, then if it has already been received by the target server, it will
beignored.

To configure a core bridge to add the duplicate id header, simply set the use- dupl i cat e- det ecti on t0 t r ue when
configuring abridgein hor net g- confi gurati on. xm .

The default value for this parameter ist r ue.

For more information on core bridges and how to configure them, please see Chapter 36.

37.4. Duplicate Detection and Cluster Connections

Cluster connectionsinternally use core bridgesto move messages reliable between nodes of the cluster. Consequently
they can also be configured to insert the duplicate id header for each message they move using their internal bridges.

To configure a cluster connection to add the duplicate id header, simply set the use- dupl i cat e- det ecti on tO t r ue
when configuring a cluster connection in hor net g- conf i gur ati on. xni .

The default value for this parameter ist r ue.

For more information on cluster connections and how to configure them, please see Chapter 38.

37.5. Duplicate Detection and Paging

HornetQ also uses duplicate detection when paging messagesto storage. Thisis so when a message is depaged from
storage and server failure occurs, we do not end up depaging the message more than once which could result in
duplicate delivery.

For more information on paging and how to configure it, please see Chapter 24.

154

38

Clusters

38.1. Clusters Overview

HornetQ clusters allow groups of HornetQ serversto be grouped together in order to share message processing load.
Each active node in the cluster is an active HornetQ server which manages its own messages and handles its own
connections. A server must be configured to be clustered, you will need to set thecl ust er ed element inthe hor net g-
configuration. xm configuration filetotrue, thisisf al se by default.

Thecluster isformed by each node declaring cluster connectionsto other nodesinthe core configuration filehor net g-
confi guration. xn . When anode forms a cluster connection to another node, internally it creates a core bridge (as
described in Chapter 36) connection between it and the other node, thisis done transparently behind the scenes - you
don't have to declare an explicit bridge for each node. These cluster connections alow messages to flow between
the nodes of the cluster to balance load.

Nodes can be connected together to form acluster in many different topologies, we will discuss a couple of the more
common topologies later in this chapter.

Well also discuss client side load balancing, where we can balance client connections across the nodes of the
cluster, and we'll consider message redistribution where HornetQ will redistribute messages between nodes to avoid
starvation.

Another important part of clustering isserver discovery where servers can broadcast their connection detailsso clients
or other servers can connect to them with the minimum of configuration.

38.2. Server discovery

Server discovery is a mechanism by which servers can broadcast their connection settings across the network. This
is useful for two purposes:

e Discovery by messaging clients. A messaging client wants to be able to connect to the servers of the cluster
without having specific knowledge of which serversin the cluster are up at any one time. Messaging clients can
beinitialised with an explicit list of the serversin a cluster, but thisis not flexible or maintainable as servers are
added or removed from the cluster.

» Discovery by other servers. Serversin acluster want to be able to create cluster connectionsto each other without
having prior knowledge of al the other serversin the cluster.

Server discovery uses UDP [http://en.wikipedia.org/wiki/User_Datagram_Protocol] multicast to broadcast server
connection settings. If UDP isdisabled on your network you won't be able to use this, and will have to specify servers
explicitly when setting up a cluster or using a messaging client.

155

http://en.wikipedia.org/wiki/User_Datagram_Protocol

Clusters

38.2.1. Broadcast Groups

A broadcast group is the means by which a server broadcasts connectors over the network. A connector defines a
way inwhich aclient (or other server) can make connectionsto the server. For more information on what a connector
is, please see Chapter 16.

The broadcast group takes a set of connector pairs, each connector pair contains connection settings for a live and
(optional) backup server and broadcasts them on the network. It also defines the UDP address and port settings.

Broadcast groups are defined in the server configuration file hor net g- confi gurati on. xm . There can be many
broadcast groups per HornetQ server. All broadcast groups must be defined in abr oadcast - gr oups €lement.

Let'stake alook at an example broadcast group from hor net g- confi gurati on. xmi :

<br oadcast - gr oups>
<br oadcast - gr oup nane="ny- br oadcast - gr oup" >
<l ocal - bi nd- addr ess>172. 16. 9. 3</ | ocal - bi nd- addr ess>
<l ocal - bi nd- port >5432</ | ocal - bi nd- port >
<gr oup- addr ess>231. 7. 7. 7</ gr oup- addr ess>
<gr oup- port >9876</ gr oup- port >
<br oadcast - peri 0d>2000</ br oadcast - peri od>
<connector-ref connector-nanme="netty-connector"
backup- connect or - nane="backup- connect or"/ >
</ br oadcast - gr oup>
</ br oadcast - gr oups>

Some of the broadcast group parameters are optional and you'll normally use the defaults, but we specify them al in
the above example for clarity. Let's discuss each onein turn:

* nane attribute. Each broadcast group in the server must have a unique name.

e local - bi nd-address. Thisis the local bind address that the datagram socket is bound to. If you have multiple
network interfaces on your server, you would specify which one you wish to use for broadcasts by setting this
property. If this property is not specified then the socket will be bound to the wildcard address, an IP address
chosen by the kernel.

e local -bi nd-port. If you want to specify alocal port to which the datagram socket is bound you can specify it
here. Normally you would just use the default value of - 1 which signifiesthat an anonymous port should be used.
This parameter is aawys specified in conjunction with | ocal - bi nd- addr ess.

e group-address. Thisisthe multicast address to which the data will be broadcast. It isaclass D IP addressin
therange 224. 0. 0. 0 t0 239. 255. 255. 255, inclusive. The address 224. 0. 0. 0 isreserved and is not available for
use. This parameter is mandatory.

e group-port. Thisisthe UDP port number used for broadcasting. This parameter is mandatory.

e broadcast - peri od. Thisisthe period in milliseconds between consecutive broadcasts. This parameter isoptional,
the default value is 2000 milliseconds.

e connector-ref. This specifies the connector and optional backup connector that will be broadcasted (see
Chapter 16 for more information on connectors). The connector to be broadcasted is specified by the connect or -

156

Clusters

nane attribute, and the backup connector to be broadcasted is specified by the backup- connect or attribute. The
backup- connect or attribute is optional.

38.2.2. Discovery Groups

While the broadcast group defines how connector information is broadcasted from a server, adiscovery group defines
how connector information is received from a multicast address.

A discovery group maintains a list of connector pairs - one for each broadcast by a different server. As it receives
broadcasts on the multicast group address from a particular server it updatesits entry in thelist for that server.

If it has not received a broadcast from a particular server for alength of time it will remove that server's entry from
itslist.

Discovery groups are used in two places in HornetQ:
» By cluster connections so they know what other serversin the cluster they should make connections to.

» By messaging clients so they can discovery what serversin the cluster they can connect to.
38.2.3. Defining Discovery Groups on the Server

For cluster connections, discovery groups are defined in the server side configuration file hornetg-
configuration. xni . All discovery groups must be defined inside adi scover y- gr oups element. There can be many
discovery groups defined by HornetQ server. Let'slook at an example:

<di scovery- groups>
<di scovery-group nane="ny-di scovery-group">
<l ocal - bi nd- addr ess>172. 16. 9. 7</ | ocal - bi nd- addr ess>
<gr oup- addr ess>231. 7. 7. 7</ gr oup- addr ess>
<gr oup- port >9876</ gr oup- port >
<refresh-ti neout >10000</refresh-ti meout >
</ di scovery-group>
</ di scovery- groups>

WEe'll consider each parameter of the discovery group:
* nane attribute. Each discovery group must have a unique name per server.

e | ocal - bi nd- addr ess. If you are running with multiple network interfaces on the same machine, you may want
to specify that the discovery group listens only only a specific interface. To do this you can specify the interface
address with this parameter. This parameter is optional.

e group-address. Thisisthe multicast ip address of the group to listen on. It should match the gr oup- addr ess in
the broadcast group that you wish to listen from. This parameter is mandatory.

e group-port. Thisisthe UDP port of the multicast group. It should match the gr oup- por t in the broadcast group
that you wish to listen from. This parameter is mandatory.

e refresh-timeout . Thisisthe period the discovery group waits after receiving the last broadcast from a particular
server before removing that servers connector pair entry from its list. You would normally set this to a value

157

Clusters

significantly higher than the br oadcast - peri od on the broadcast group otherwise servers might intermittently
disappear from the list even though they are still broadcasting due to slight differencesin timing. This parameter
isoptional, the default value is 10000 milliseconds (10 seconds).

38.2.4. Discovery Groups on the Client Side

L et's discuss how to configure a HornetQ client to use discovery to discover alist of serversto which it can connect.
The way to do this differs depending on whether you're using JM S or the core API.

38.2.4.1. Configuring client discovery using JMS

If you'reusing IMSand you're al so using the IM S Service on the server to load your JM S connection factory instances
into JNDI, then you can specify which discovery group to use for your JM S connection factory in the server side xml
configuration hor net g-j ns. xni . Let'stake alook at an example:

<connection-factory nanme="Connecti onFactory">
<di scovery-group-ref discovery-group-nanme="ny-di scovery-group"/>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
</ connecti on-factory>

Theelement di scover y- gr oup- r ef specifiesthenameof adiscovery group definedinhor net g- confi gurati on. xm .

When this connection factory is downloaded from JNDI by aclient application and JM S connections are created from
it, those connections will be load-balanced across the list of servers that the discovery group maintains by listening
on the multicast address specified in the discovery group configuration.

If you'reusing JMS, but you're not using JNDI to lookup aconnection factory - you'reinstantiating the JM S connection
factory directly then you can specify the discovery group parameters directly when creating the JMS connection
factory. Here's an example:

final String groupAddress = "231.7.7.7";
final int groupPort = 9876;

Connecti onFactory j nsConnecti onFactory =
Hor net QIMSCO i ent . cr eat eConnect i onFact or y(gr oupAddr ess, groupPort);

Connection jnmsConnecti onl = jnsConnecti onFactory. createConnection();

Connection jnsConnecti on2 = jmsConnecti onFactory. creat eConnection();

The refresh-tinmeout can be set directly on the connection factory by using the setter method
set Di scover yRef reshTi meout () if you want to change the default value.

There is dso a further parameter settable on the connection factory using the setter method
set Di scoveryl ni ti al Wi t Ti neout () . If the connection factory is used immediately after creation then it may not
have had enough time to received broadcasts from all the nodes in the cluster. On first usage, the connection factory
will make sureit waitsthislong since creation before creating thefirst connection. The default valuefor this parameter
is 10000 milliseconds.

158

Clusters

38.2.4.2. Configuring client discovery using Core

If you're using the core API to directly instantiate d i ent Sessi onFact ory instances, then you can specify the
discovery group parameters directly when creating the session factory. Here's an example:

final String groupAddress = "231.7.7.7";
final int groupPort = 9876;

Sessi onFactory factory = Hornet QCl i ent.createC ient Sessi onFact ory(groupAddr ess,

Client Session sessionl = factory.created ientSession(...); dientSession
session2 = factory.created ientSession(...);

The refresh-timeout can be set directly on the session factory by using the setter method
set Di scover yRef reshTi neout () if you want to change the default value.

There is aso a further parameter settable on the session factory using the setter method
set Di scoveryl nitial Wi t Ti meout () . If the session factory is used immediately after creation then it may not have
had enough time to received broadcasts from all the nodesin the cluster. On first usage, the session factory will make
sure it waits this long since creation before creating the first session. The default value for this parameter is 10000
milliseconds.

38.3. Server-Side Message Load Balancing

If cluster connections are defined between nodes of a cluster, then HornetQ will load balance messages arriving at
aparticular node from aclient.

Let's take a simple example of a cluster of four nodes A, B, C, and D arranged in a symmetric cluster (described in
Section 38.7.1). We have aqueue called o der Queue deployed on each node of the cluster.

We have client Ca connected to node A, sending orders to the server. We have aso have order processor clients Pa,
Pb, Pc, and Pd connected to each of the nodes A, B, C, D. If no cluster connection was defined on node A, then as
order messages arrive on node A they will al end up in the & der Queue on node A, so will only get consumed by
the order processor client attached to node A, Pa.

If we define a cluster connection on hode A, then as ordered messages arrive on node A instead of all of them going
into the local O der Queue instance, they are distributed in a round-robin fashion between all the nodes of the cluster.
The messages are forwarded from the receiving node to other nodes of the cluster. Thisisall done on the server side,
the client maintains a single connection to node A.

For example, messages arriving on node A might be distributed in the following order between the nodes: B, D, C,
A,B,D,C, A, B, D. Theexact order depends on the order the nodes started up, but the algorithm used isround robin.

HornetQ cluster connections can be configured to aways blindly load balance messages in a round robin fashion
irrespective of whether there are any matching consumers on other nodes, but they can be a bit cleverer than that and
also be configured to only distribute to other nodes if they have matching consumers. We'll look at both these cases
in turn with some examples, but first we'll discuss configuring cluster connectionsin general.

38.3.1. Configuring Cluster Connections

159

gr oug

Clusters

Cluster connections group servers into clusters so that messages can be load balanced between the nodes of the
cluster. Let's take a look at a typical cluster connection. Cluster connections are always defined in hor net g-
configuration.xm insideacl uster-connection element. There can be zero or more cluster connections defined
per HornetQ server.

<cl ust er-connecti ons>
<cl ust er-connecti on nanme="ny-cl uster">
<addr ess>j ns</ addr ess>
<retry-interval >500</retry-interval >
<use-dupli cat e-detecti on>true</use-duplicate-detection>
<f or war d- when- no- consuner s>f al se</ f or war d- when- no- consuner s>
<max- hops>1</ max- hops>
<di scovery-group-ref discovery-group-nanme="ny-di scovery-group"/>
</ cl ust er-connecti on>
</ cl ust er-connecti ons>

In the above cluster connection all parameters have been explicitly specified. In practice you might use the defaults
for some.

addr ess. Each cluster connection only applies to messages sent to an address that starts with this value.

In this case, this cluster connection will load balance messages sent to address that start with j ns. This cluster
connection, will, in effect apply to all IM S queue and topic subscriptions since they map to core queues that start
with the substring "jms".

The address can be any value and you can have many cluster connections with different values of address,
simultaneously balancing messages for those addresses, potentially to different clusters of servers. By having
multiple cluster connections on different addresses a single HornetQ Server can effectively take part in multiple
clusters simultaneously.

Be careful not to have multiple cluster connections with overlapping values of address, e.g. "europe" and
"europe.news" since this could result in the same messages being distributed between more than one cluster
connection, possibly resulting in duplicate deliveries.

This parameter is mandatory.

retry-interval . We mentioned before that, internally, cluster connections cause bridges to be created between
the nodes of the cluster. If the cluster connection is created and the target node has not been started, or say, is
being rebooted, then the cluster connections from other nodes will retry connecting to the target until it comes
back up, in the same way as a bridge does.

This parameter determines the interval in milliseconds between retry attempts. It has the same meaning as the
retry-interval onabridge (asdescribed in Chapter 36).

This parameter is optional and its default value is 500 milliseconds.

use- dupl i cat e-det ecti on. Internaly cluster connections use bridges to link the nodes, and bridges can be
configured to add aduplicateid property in each message that isforwarded. If thetarget node of the bridge crashes

160

Clusters

and then recovers, messages might be resent from the source node. By enabling duplicate detection any duplicate
messages will be filtered out and ignored on receipt at the target node.

This parameter has the same meaning as use- dupl i cat e- det ecti on on a bridge. For more information on
duplicate detection, please see Chapter 37.

This parameter is optional and has a default value of t r ue.

f orwar d- when- no- consuners. This parameter determines whether messages will be distributed round robin
between other nodes of the cluster irrespective of whether there are matching or indeed any consumers on other
nodes.

If thisisset tot r ue then each incoming message will be round robin'd even though the same queues on the other
nodes of the cluster may have no consumersat al, or they may have consumers that have non matching message
filters (selectors). Note that HornetQ will not forward messages to other nodesif there are no queues of the same
name on the other nodes, even if this parameter isset to t r ue.

If thisis set to f al se then HornetQ will only forward messages to other nodes of the cluster if the address to
which they are being forwarded has queues which have consumers, and if those consumers have message filters
(selectors) at least one of those selectors must match the message.

This parameter is optional, the default valueisf al se.

max- hops. When a cluster connection decides the set of nodes to which it might load balance a message, those
nodes do not have to be directly connected to it via a cluster connection. HornetQ can be configured to also
load balance messages to nodes which might be connected to it only indirectly with other HornetQ servers as
intermediatesin achain.

Thisalows HornetQ to be configured in more complex topol ogies and still provide message load balancing. We'll
discuss this more later in this chapter.

The default value for this parameter is 1, which means messages are only load balanced to other HornetQ serves
which are directly connected to this server. This parameter is optional.

di scovery- gr oup- r ef . Thisparameter determineswhich discovery group isused to obtainthelist of other servers
in the cluster that this cluster connection will make connections to.

38.3.2. Cluster User Credentials

When creating connections between nodes of a cluster to form a cluster connection, HornetQ uses a cluster user and
cluster password which is defined in hor net g- confi gurati on. xni :

<cl ust er - user >HORNETQ CLUSTER. ADM N. USER</ cl ust er - user >
<cl ust er - passwor d>CHANGE ME! | </ cl ust er - passwor d>

161

Clusters

Warning

It is imperative that these values are changed from their default, or remote clients will be able to make
connections to the server using the default values. If they are not changed from the default, HornetQ will
detect this and pester you with awarning on every start-up.

38.4. Client-Side Load balancing

With HornetQ client-side load balancing, subsequent sessions created using a single session factory can be connected
to different nodes of the cluster. This allows sessions to spread smoothly across the nodes of a cluster and not be
"clumped" on any particular node.

Theload balancing policy to be used by the client factory is configurable. HornetQ provides two out-of-the-box load
balancing policies and you can also implement your own and use that.

The out-of-the-box policies are

* Round Robin. With this policy thefirst nodeis chosen randomly then each subsequent node is chosen sequentially
in the same order.

For example nodes might be chosen inthe order B, C, D, A,B,C,D,A,BorD,A,B,C, A, B,C,D,Aor C,
D,A,B,CD,AB,C,D,A.

¢ Random. With this policy each node is chosen randomly.

You can aso implement your own policy by implementing the interface
org. hornetq. api . core. client.| oadbal ance. Connecti onLoadBal anci ngPol i cy

Specifying which load balancing policy to use differs whether you ae using JMS or
the core API. If you dont specify a policy then the default will be used which is

org. hornetq. api . core. client.| oadbal ance. RoundRobi nConnect i onLoadBal anci ngPol i cy.

If you'reusing IMS, and you're using JNDI on the server to put your JM S connection factories into JNDI, then you
can specify the load balancing policy directly inthe hor net g-j ms. xni configuration file on the server as follows:

<connecti on-factory nanme="Connecti onFactory">
<di scovery-group-ref discovery-group-nanme="ny-di scovery-group"/>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<connecti on- | oad- bal anci ng- pol i cy-cl ass- nanme>
org. hornetq. api . core. client.| oadbal ance. RandonConnect i onLoadBal anci ngPol i cy
</ connect i on-1| oad- bal anci ng- pol i cy- cl ass- nane>
</ connecti on-factory>

The above example would deploy a IMS connection factory that uses the random connection load balancing policy.

If you're using JMS but you're instantiating your connection factory directly on the client side then you can set the
load balancing policy using the setter on the Hor net QConnect i onFact ory before using it:

162

Clusters

Connecti onFactory jnsConnecti onFactory = Hornet QIMSCl i ent. creat eConnecti onFactory(...);
j msConnecti onFact ory. set LoadBal anci ngPol i cyd assNane("com acnme. MyLoadBal anci ngPol i cy") ;

If you're using the core API, you can set the load balancing policy directly on the d i ent Sessi onFact ory instance
you are using:

Cli ent Sessi onFactory factory = Hornet Qi ent.created ientSessionFactory(...);
factory. set LoadBal anci ngPol i cyCl assName("com acne. MyLoadBal anci ngPol i cy");

The set of servers over which the factory load balances can be determined in one of two ways:
e Specifying servers explicitly

e Using discovery.
38.5. Specifying Members of a Cluster Explicitly

Sometimes UDP is not enabled on a network so it's hot possible to use UDP server discovery for clients to discover
thelist of serversin the cluster, or for servers to discover what other servers are in the cluster.

In this case, the list of servers in the cluster can be specified explicitly on each node and on the client side. Let's
look at how we do this:

38.5.1. Specify List of Servers on the Client Side

This differs depending on whether you're using IM S or the Core API
38.5.1.1. Specifying List of Servers using JMS

If you're using JMS, and you're using the IMS Service to load your JMS connection factory instances directly into
JNDI on the server, then you can specify the list of servers in the server side configuration file hor net g-j ms. xni .
Let'stake alook at an example:

<connecti on-factory nanme="Connecti onFactory">
<connect or s>
<connect or-ref connect or - name="ny-connect or 1"
backup- connect or - nane="ny- backup- connect or 1"/ >
<connect or-ref connector-nane="my-connect or 2"
backup- connect or - nanme="ny- backup- connect or 2"/ >
<connect or-ref connect or- nane="nmy-connect or 3"
backup- connect or - name="ny- backup- connect or 3"/ >
</ connect or s>
<entries>
<entry name="Connecti onFactory"/>
</entries>
</ connection-factory>

163

Clusters

The connecti on-fact ory element can contain zero or more connect or - r ef elements, each one of which specifies
a connect or - nane attribute and an optional backup- connect or - name attribute. The connect or - nane attribute
references a connector defined in hor net g- confi gurati on. xmi which will be used as alive connector. The backup-

connect or - name isoptional, and if specified it also references a connector defined in hor net g- confi gurati on. xm .
For more information on connectors please see Chapter 16.

The connection factory thus maintains alist of [connector, backup connector] pairs, these pairs are then used by the
client connection load balancing policy on the client side when creating connections to the cluster.

If you're using JIM S but you're not using JNDI then you can also specify the list of [connector, backup connector]
pairs directly when instantiating the Hor net QConnect i onFact ory, here's an example:

Li st <Pai r <Tr ansport Confi gurati on, TransportConfiguration>> serverList =
new ArrayLi st <Pai r <Transport Confi guration, TransportConfiguration>>();

serverLi st.add(new Pai r<Transport Confi gurati on,
Transport Confi gurati on>(liveTC0, backupTC0));

serverLi st.add(new Pair<Transport Confi gurati on,
Transport Confi gurati on>(liveTCl, backupTCl));

server Li st. add(new Pai r <Transport Confi gurati on,
Transport Configurati on>(liveTC2, backupTC2));

Connecti onFactory j nsConnecti onFactory = Hornet QIMSCl i ent . cr eat eConnecti onFact ory(serverList);
Connection jnsConnectionl = jnsConnecti onFactory. createConnection();

Connection jnsConnection2 = jnsConnecti onFactory. createConnection();

In the above snippet we create a list of pairs of Transport Confi gurati on objects. Each Transport Confi gurati on
object contains knowledge of how to make a connection to a specific server.

A Hor net QConnect i onFact or y instance isthen created passing thelist of serversin the constructor. Any connections
subsequently created by this factory will create connections according to the client connection load balancing policy
applied to that list of servers.

38.5.1.2. Specifying List of Servers using the Core API

If you're using the core API you can al so specify thelist of serversdirectly when creatingthe d i ent Sessi onFact ory
instance. Here's an example:

Li st <Pai r <Tr ansport Confi gurati on, Transport Configurati on>> serverlList =
new ArraylLi st <Pai r <Transport Confi guration, TransportConfiguration>>();

server Li st. add(new Pai r <Transport Confi gurati on,
Transport Confi gurati on>(liveTC0, backupTC0));

serverLi st. add(new Pair<Transport Confi gurati on,
Transport Confi gurati on>(liveTCl, backupTCl));

server Li st. add(new Pai r <Transport Confi gurati on,
Transport Configurati on>(liveTC2, backupTC2));

Cli ent Sessi onFactory factory = Hornet QCl i ent.createC ientSessionFactory(serverList);

d i ent Sessi on sesisonl = factory.created ientSession(...);

164

Clusters

C i ent Sessi on session2 = factory.created ientSession(...);

In the above snippet we create a list of pairs of Transport Confi gurati on objects. Each Tr ansport Confi gurati on
object contains knowledge of how to make a connection to a specific server. For more information on this, please
see Chapter 16.

A dient Sessi onFact oryl npl instance is then created passing the list of servers in the constructor. Any sessions
subsequently created by this factory will create sessions according to the client connection load balancing policy
applied to that list of servers.

38.5.2. Specifying List of Servers to form a Cluster

Let'stake alook at an example where each cluster connection is defined for a symmetric cluster, but we're not using
discovery for each node to discover its neighbours, instead we'll configure each cluster connection to have explicit
knowledge of all the other nodesin the cluster.

Here's an example cluster connection definition showing that:

<cl ust er - connecti ons>
<cl ust er-connecti on nane="ny-explicit-cluster">
<addr ess>j ns</ addr ess>
<connector-ref connector-nanme="ny-connector1"
backup- connect or - nanme="ny- backup- connect or 1"/ >
<connect or-ref connect or- nane="nmny-connect or 2"
backup- connect or - nanme="ny- backup- connect or 2"/ >
<connect or-ref connect or - name="ny- connect or 3"
backup- connect or - nane="ny- backup- connect or 3"/ >
</ cl ust er - connecti on>
</ cl ust er-connecti ons>

Thecl ust er- connect i on €élement can contain zero or more connect or - r ef elements, each one of which specifies
a connect or- nane atribute and an optional backup- connect or - nane attribute. The connect or - name attribute
references a connector defined in hor net g- confi gurati on. xmi which will be used as alive connector. The backup-

connect or - name isoptional, and if specified it also references a connector defined in hor net g- confi gurati on. xm .
For more information on connectors please see Chapter 16.

Note

Dueto alimitation in HornetQ 2.0.0, failover is not supported for clusters defined using a static set of nodes.
To support failover over cluster nodes, they must be configured to use a discovery group.

38.6. Message Redistribution

Another important part of clustering is message redistribution. Earlier we learned how server side message load
balancing round robins messages across the cluster. If f or war d- when- no- consurer s isfalse, then messages won't be
forwarded to nodes which don't have matching consumers, this is great and ensures that messages don't arrive on a
gueue which has no consumers to consume them, however there is a situation it doesn't solve: What happens if the
consumers on a queue close after the messages have been sent to the node? If there are no consumers on the queue
the message won't get consumed and we have a starvation situation.

165

Clusters

This is where message redistribution comes in. With message redistribution HornetQ can be configured to
automatically redistribute messages from queues which have no consumers back to other nodes in the cluster which
do have matching consumers.

Message redistribution can be configured to kick in immediately after the last consumer on a queue is closed, or
to wait a configurable delay after the last consumer on a queue is closed before redistributing. By default message
redistribution is disabled.

M essage redistribution can be configured on a per address basis, by specifying the redistribution delay in the address
settings, for more information on configuring address settings, please see Chapter 25.

Here's an address settings snippet from hor net g- conf i gur at i on. xm showing how message redistribution is enabled
for aset of queues:

<addr ess-settings>
<address-setting match="j nms. #">
<redi stribution-del ay>0</redi stributi on-del ay>
</ addr ess-setting>
</ addr ess-settings>

The above addr ess-set ti ngs block would set aredi stributi on-del ay of 0 for any queue which is bound to an
address that starts with "jms.". All IM S queues and topic subscriptions are bound to addresses that start with "jms.",
so the above would enable instant (no delay) redistribution for all IMS queues and topic subscriptions.

Theattributemat ch can be an exact match or it can beastring that conformsto the HornetQ wildcard syntax (described
in Chapter 13).

The element r edi st ri but i on- del ay defines the delay in milliseconds after the last consumer is closed on a queue
before redistributing messages from that queue to other nodes of the cluster which do have matching consumers. A
delay of zero means the messages will beimmediately redistributed. A value of - 1 signifies that messages will never
be redistributed. The default valueis- 1.

It often makes senseto introduce adelay beforeredistributing asit'sacommon case that aconsumer closes but another
one quickly is created on the same queue, in such a case you probably don't want to redistribute immediately since
the new consumer will arrive shortly.

38.7. Cluster topologies

HornetQ clusters can be connected together in many different topologies, let's consider the two most common ones
here

38.7.1. Symmetric cluster

A symmetric cluster is probably the most common cluster topology, and you'll be familiar with if you've had
experience of JBoss Application Server clustering.

With a symmetric cluster every node in the cluster is connected to every other node in the cluster. In other words
every node in the cluster is no more than one hop away from every other node.

166

Clusters

To form a symmetric cluster every node in the cluster defines a cluster connection with the attribute max- hops set
to 1. Typically the cluster connection will use server discovery in order to know what other serversin the cluster it
should connect to, although it is possible to explicitly define each target server too in the cluster connection if, for
example, UDP is not available on your network.

With a symmetric cluster each node knows about all the queues that exist on al the other nodes and what consumers
they have. With this knowledge it can determine how to load balance and redistribute messages around the nodes.

38.7.2. Chain cluster

With achain cluster, each node in the cluster is not connected to every node in the cluster directly, instead the nodes
form a chain with a node on each end of the chain and all other nodes just connecting to the previous and next nodes
in the chain.

An example of this would be a three node chain consisting of nodes A, B and C. Node A is hosted in one network
and has many producer clients connected to it sending order messages. Due to corporate policy, the order consumer
clients need to be hosted in a different network, and that network is only accessible viaathird network. In this setup
node B acts as a mediator with no producers or consumers on it. Any messages arriving on node A will be forwarded
to node B, which will in turn forward them to node C where they can get consumed. Node A does not need to directly
connect to C, but all the nodes can still act as a part of the cluster.

To set up acluster in thisway, node A would define a cluster connection that connects to node B, and node B would
define a cluster connection that connects to node C. In this case we only want cluster connections in one direction
since we're only moving messages from node A->B->C and never from C->B->A.

For this topology we would set max- hops to 2. With avalue of 2 the knowledge of what queues and consumers that
exist on node C would be propagated from node C to node B to node A. Node A would then know to distribute
messages to node B when they arrive, even though node B has no consumersitself, it would know that a further hop
away is node C which does have consumers.

167

39

High Availability and Failover

We define high availability as the ability for the system to continue functioning after failure of one or more of the
servers.

A part of high availability isfailover which we define as the ability for client connections to migrate from one server
to another in event of server failure so client applications can continue to operate.

39.1. Live - Backup Pairs

HornetQ allows pairs of servers to be linked together as live - backup pairs. In this release there is a single backup
server for each live server. A backup server is owned by only one live server. Backup servers are not operational
until failover occurs.

Before failover, only the live server is serving the HornetQ clients while the backup server remains passive. When
clientsfail over to the backup server, the backup server becomes active and starts to service the HornetQ clients.

39.1.1. HA modes

HornetQ provides two different modes for high availahility, either by replicating data from the live server journal to
the backup server or using a shared store for both servers.

Note

Only persistent message data will survive failover. Any non persistent message data will not be available
after failover.

39.1.1.1. Data Replication

In this mode, data stored in the HornetQ journal are replicated from the live server's journal to the backup server's
journal. Note that we do not replicate the entire server state, we only replicate the journal and other persistent
operations.

Replication is performed in an asynchronous fashion between live and backup server. Dataisreplicated oneway in a
stream, and responses that the data has reached the backup is returned in another stream. Pipelining replications and
responsesto replicationsin separate streams allows replication throughput to be much higher than if we synchronously
replicated data and waited for aresponse serially in an RPC manner before replicating the next piece of data.

When the user receives confirmation that a transaction has committed, prepared or rolled back or a durable message
has been sent, we can guarantee it has reached the backup server and been persisted.

168

High Availability and Failover

Data replication introduces some inevitabl e performance overhead compared to non replicated operation, but has the
advantage in that it requires no expensive shared file system (e.g. a SAN) for failover, in other wordsiit is a shared-
nothing approach to high availability.

Failover with data replication is also faster than failover using shared storage, since the journal does not have to be
reloaded on failover at the backup node.

backup-connector —O D acceptor
J N

journal replication
.=====“ . =====ﬂ

39.1.1.1.1. Configuration

First, on the live server, in hor net g- conf i gurati on. xm , configure the live server with knowledge of its backup
server. This is done by specifying a backup- connect or-ref element. This element references a connector, aso
specified on the live server which specifies how to connect to the backup server.

Here's a snippet from live server's hor net g- conf i gurati on. xm configured to connect to its backup server:

<backup- connect or-ref connect or - name="backup- connector"/ >

<connect or s>
<l-- This connector specifies howto connect to the backup server -->
<l-- backup server is |located on host "192.168.0.11" and port "5445" -->
<connect or name="backup- connect or ">
<factory-cl ass>org. hornetq.core.renmoting.inpl.netty. NettyConnector Fact ory</factory-cl ass>
<par am key="host" val ue="192.168.0.11"/>
<par am key="port" val ue="5445"/>
</ connect or >
</ connect or s>

Secondly, on the backup server, we flag the server as a backup and make sure it has an acceptor that the live server
can connect to. We also make sure the shared-store paramater is set to false:

<backup>t r ue</ backup>
<shar ed- st or e>f al se<shar ed- st or e>

<accept or s>
<accept or name="acceptor">
<factory-cl ass>org. hornetq.core.renoting.inpl.netty. NettyAcceptorFactory</factory-cl ass>
<par am key="host" val ue="192.168.0. 11"/ >

169

High Availability and Failover

<param key="port" val ue="5445"/>
</ accept or >
</ accept or s>

For a backup server to function correctly it's also important that it has the same set of bridges, predefined queues,
cluster connections, broadcast groups and discovery groups as defined on the live node. The easiest way to ensure
thisisto copy the entire server side configuration from live to backup and just make the changes as specified above.

39.1.1.1.2. Synchronizing a Backup Node to a Live Node

In order for live - backup pairs to operate properly, they must be identical replicas. This means you cannot just use
any backup server that's previously been used for other purposes as a backup server, since it will have different data
in its persistent storage. If you try to do so, you will receive an exception in the logs and the server will fail to start.

To create a backup server for alive server that's already been used for other purposes, it's necessary to copy the dat a
directory from the live server to the backup server. This means the backup server will have an identical persistent
store to the backup server.

Oncealive server hasfailed over onto abackup server, theold live server becomesinvalid and cannot just be restarted.
To resynchonize the pair as aworking live backup pair again, both servers need to be stopped, the data copied from
the live node to the backup node and restarted again.

The next release of HornetQ will provide functionality for automatically synchronizing a new backup node to alive
node without having to temporarily bring down the live node.

39.1.1.2. Shared Store

When using a shared store, both live and backup servers share the same entire data directory using a shared file
system. This means the paging directory, journal directory, large messages and binding journal.

When failover occurs and the backup server takes over, it will 1oad the persistent storage from the shared file system
and clients can connect to it.

This style of high availability differs from datareplication in that it requires a shared file system which is accessible
by both the live and backup nodes. Typically this will be some kind of high performance Storage Area Network
(SAN). Wedo not recommend you use Network Attached Storage (NAS), e.g. NFS mountsto store any shared journal
(NFSisdow).

The advantage of shared-store high availability is that no replication occurs between the live and backup nodes, this
means it does not suffer any performance penalties due to the overhead of replication during normal operation.

The disadvantage of shared store replication is that it requires a shared file system, and when the backup server
activates it needs to load the journal from the shared store which can take some time depending on the amount of
datain the store.

If you require the highest performance during normal operation, have accessto afast SAN, and can livewith aslightly
slower failover (depending on amount of data), we recommend shared store high availability

170

High Availability and Failover

li ver k rver

shared file system

39.1.1.2.1. Configuration

To configure the live and backup server to share their store, configure both hor net g- confi gurati on. xni :

<shar ed- st or e>t r ue<shar ed- st or e>

Additionally, the backup server must be flagged explicitly as a backup:

<backup>t r ue</ backup>

Inorder for live - backup pairsto operate properly with ashared store, both servers must have configured the location
of journal directory to point to the same shared location (as explained in Section 15.3)

If clientswill use automatic failover with IMS, the live server will need to configure a connector to the backup server
and reference it fromitshornet g-j ns. xm configuration as explained in Section 39.2.1.

39.1.1.2.2. Synchronizing a Backup Node to a Live Node

As both live and backup servers share the same journal, they do not need to be synchronized. However until, both
live and backup servers are up and running, high-availability can not be provided with asingle server. After failover,
at first opportunity, stop the backup server (which is active) and restart the live and backup servers.

In the next release of HornetQ we will provide functionality to automatically synchronize a new backup server with
arunning live server without having to temporarily bring the live server down.

39.2. Failover Modes

HornetQ defines two types of client failover:
e Automatic client failover

* Application-level client failover

171

High Availability and Failover

HornetQ also provides 100% transparent automatic reattachment of connections to the same server (e.g. in case of
transient network problems). Thisis similar to failover, except it's reconnecting to the same server and is discussed
in Chapter 34

During failover, if the client has consumers on any non persistent or temporary queues, those queues will be
automatically recreated during failover on the backup node, since the backup node will not have any knowledge of
non persistent queues.

39.2.1. Automatic Client Failover

HornetQ clients can be configured with knowledge of live and backup servers, so that in event of connection failure
at the client - live server connection, the client will detect this and reconnect to the backup server. The backup server
will then automatically recreate any sessions and consumers that existed on each connection before failover, thus
saving the user from having to hand-code manual reconnection logic.

HornetQ clients detect connection failure when it has not received packets from the server within the time given by
client-fail ure-check-period asexplained in section Chapter 17. If the client does not receive datain good time,
it will assume the connection has failed and attempt failover.

HornetQ clients can be configured with the list of live-backup server pairsin a number of different ways. They can
be configured explicitly or probably the most common way of doing this is to use server discovery for the client
to automatically discover the list. For full details on how to configure server discovery, please see Section 38.2.
Alternatively, the clients can explicitly specifies pairs of live-backup server as explained in Section 38.5.2.

To enable automatic client failover, the client must be configured to alow non-zero reconnection attempts (as
explained in Chapter 34).

Sometimes you want a client to failover onto a backup server even if the live server is just cleanly shutdown rather
than having crashed or the connection failed. To configure this you can set the property Fai | over OnSer ver Shut down
to true either on the Hor net QConnect i onFact ory if you're using JMS or in the hornet g-j ms. xm (fai | over-on-

server - shut down property) file when you define the connection factory, or if using core by setting the property
directly onthe d i ent Sessi onFact or yl npl instance after creation. The default value for this property isf al se, this
meansthat by default HornetQ clientswill not failover to a backup server if thelive server issimply shutdown cleanly.

Note

By default, cleanly shutting down the server will not trigger failover on the client.

Using CTRL-C on a HornetQ server or JBoss AS instance causes the server to cleanly shut down, so will
not trigger failover on the client.

If you want the client to failover when its server is cleanly shutdown then you must set the property
Fai | over OnSer ver Shut down to true

By default failover will only occur after at least one connection has been made to the live server. In other words,
by default, failover will not occur if the client fails to make an initial connection to the live server - in this case it
will simply retry connecting to the live server according to the reconnect-attempts property and fail after this number
of attempts.

172

High Availability and Failover

In some cases, you may want the client to automatically try the backup server it fails to make an initial connection
to the live server. In this case you can set the property Fai | over Onl ni ti al Connecti on, Of fai |l over-on-initial -
connection in Xxml, on the d i ent Sessi onFact oryl npl OF Hor net QConnect i onFact ory. The default value for this
parameter isf al se.

For examples of automatic failover with transacted and non-transacted JM S sessions, please see Section 11.1.57 and
Section 11.1.33.

39.2.1.1. A Note on Server Replication

HornetQ does not replicate full server state between live and backup servers. When the new session is automatically
recreated on the backup it won't have any knowledge of messages already sent or acknowledged in that session. Any
in-flight sends or acknowledgements at the time of failover might also be lost.

By replicating full server state, theoretically we could provide a 100% transparent seamless failover, which would
avoid any lost messages or acknowledgements, however this comes at a great cost: replicating the full server state
(including the queues, session, etc.). Thiswould require replication of the entire server state machine; every operation
onthelive server would haveto replicated on the replica server(s) in the exact same global order to ensure aconsistent
replica state. This is extremely hard to do in a performant and scalable way, especially when one considers that
multiple threads are changing the live server state concurrently.

It is possible to provide full state machine replication using techniques such as virtual synchrony, but this does not
scale well and effectively serializes all operations to a single thread, dramatically reducing concurrency.

Other techniques for multi-threaded active replication exist such as replicating lock states or replicating thread
scheduling but thisis very hard to achieve at a Javalevel.

Consequently it has decided it was not worth massively reducing performance and concurrency for the sake of 100%
transparent failover. Even without 100% transparent failover, it is simple to guarantee once and only once delivery,
even in the case of failure, by using a combination of duplicate detection and retrying of transactions. However this
is not 100% transparent to the client code.

39.2.1.2. Handling Blocking Calls During Failover

If the client code is in ablocking call to the server, waiting for a response to continue its execution, when failover
occurs, the new session will not have any knowledge of the call that was in progress. This call might otherwise hang
for ever, waiting for aresponse that will never come.

To prevent this, HornetQ will unblock any blocking calls that were in progress at the time of falover
by making them throw a j avax.jms. IMSException (if using JMS), or a Hor net GExcepti on with error code
Hor net QExcept i on. UNBLOCKED. It is up to the client code to catch this exception and retry any operationsif desired.

If the method being unblocked isacall to commit(), or prepare(), then thetransaction will be automatically rolled back
and HornetQ will throw aj avax. j ns. Transact i onRol | edBackExcept i on (if using JMS), or a Hor net QExcept i on
with error code Hor net QExcept i on. TRANSACTI ON_ROLLED BACK if using the core API.

39.2.1.3. Handling Failover With Transactions

If the session is transactional and messages have aready been sent or acknowledged in the current transaction, then
the server cannot be sure that messages sent or acknowledgements have not been lost during the failover.

173

High Availability and Failover

Consequently the transaction will be marked as rollback-only, and any subsequent attempt to commit it will
throw a j avax. j ms. Transacti onRol | edBackExcepti on (if using JMS), or a Hor net QExcept i on With error code
Hor net QExcept i on. TRANSACTI ON_ROLLED BACK if using the core API.

It is up to the user to catch the exception, and perform any client side local rollback code as necessary. There is
no need to manually rollback the session - it is already rolled back. The user can then just retry the transactional
operations again on the same session.

HornetQ ships with a fully functioning example demonstrating how to do this, please see Section 11.1.57

If failover occurs when a commit call is being executed, the server, as previously described, will unblock the call to
prevent a hang, since no response will come back. In this case it is not easy for the client to determine whether the
transaction commit was actually processed on the live server before failure occurred.

To remedy this, the client can simply enable duplicate detection (Chapter 37) in the transaction, and retry the
transaction operations again after the call isunblocked. If the transaction had indeed been committed on thelive server
successfully before failover, then when the transaction is retried, duplicate detection will ensure that any durable
messages resent in the transaction will be ignored on the server to prevent them getting sent more than once.

Note

By catching the rollback exceptions and retrying, catching unblocked calls and enabling duplicate detection,
once and only once delivery guarantees for messages can be provided in the case of failure, guaranteeing
100% no loss or duplication of messages.

39.2.1.4. Handling Failover With Non Transactional Sessions
If the session is non transactional, messages or acknowledgements can be lost in the event of failover.

If you wish to provide once and only once delivery guarantees for non transacted sessions too, enabled duplicate
detection, and catch unblock exceptions as described in Section 39.2.1.2

39.2.2. Getting Notified of Connection Failure

JMS provides a standard mechanism for getting notified asynchronously of connection failure:
java.j ms. Except i onLi st ener . Please consult the IMS javadoc or any good JMS tutoria for more information on
how to use this.

The HornetQ core APl aso provides a smilar feature in the form of the class

org. hornet.core.client. Sessi onFai | ureLi st ener

Any ExceptionListener or SessionFailureListener instance will always be called by HornetQ on event of connection
failure, irrespective of whether the connection was successfully failed over, reconnected or reattached.

39.2.3. Application-Level Failover

In some cases you may not want automatic client failover, and prefer to handle any connection failure yourself, and
code your own manually reconnection logic in your own failure handler. We define this as application-level failover,
since the failover is handled at the user application level.

174

High Availability and Failover

To implement application-level failover, if you're using JMS then you need to set an Excepti onLi st ener class
on the JMS connection. The Except i onLi st ener will be called by HornetQ in the event that connection failure is
detected. Inyour Except i onLi st ener , youwould closeyour old JM S connections, potentially ook up new connection
factory instances from JNDI and creating new connections. In this case you may well be using HA-JNDI [http://
www.jboss.org/community/wiki/JBossHAJINDIImpl] to ensure that the new connection factory islooked up from a
different server.

For aworking example of application-level failover, please see Section 11.1.1.

If you are using the core API, then the procedure is very similar: you would set a Fai | ureLi st ener on the core
d i ent Sessi on instances.

175

http://www.jboss.org/community/wiki/JBossHAJNDIImpl

40

Libaio Native Libraries

HornetQ distributes a native library, used as a bridge between HornetQ and linux libaio.

l'i bai o is alibrary, developed as part of the linux kernel project. With 1i bai o we submit writes to the operating
system where they are processed asynchronously. Some time later the OS will call our code back when they have
been processed.

We use thisin our high performance journal if configured to do so, please see Chapter 15.
These are the native libraries distributed by HornetQ:

e libHornetQA1032.s0 - x86 32 bits

* libHornetQAIO64.s0 - x86 64 hits

When using libaio, HornetQ will always try loading these files as long as they are on the library path.

40.1. Compiling the native libraries

In the case that you are using Linux on a platform other than x86 32 or x86_64 (for example Itanium 64 bits or
IBM Power) you may need to compile the native library, since we do not distribute binaries for those platforms with
therelease.

40.1.1. Install requirements

Note

At the moment the native layer isonly available on Linux. If you arein aplatform other than Linux the native
compilation will not work

The native library uses autoconf [http://en.wikipedia.org/wiki/Autoconf] what makes the compilation process easy,
however you need to install extra packages as a requirement for compilation:

e gcc- C Compiler

e gcc-ct+ or g++ - Extension to gec with support for C++
e autoconf - Tool for automating native build process

* make- Plain old make

e automake - Tool for automating make generation

176

http://en.wikipedia.org/wiki/Autoconf

Libaio Native Libraries

e libtool - Tool for link editing native libraries

e libaio - library to disk asynchronous IO kernel functions

e libaio-dev - Compilation support for libaio

e A full IDK installed with the environment variable JAVA_HOME set to its location

To perform this installation on RHEL or Fedora, you can simply type this at acommand line:

sudo yuminstall autonake |ibtool autoconf gcc-g++ gcc |ibaio |ibaio-dev nake

Or on debian systems:

sudo apt-get install automake |ibtool autoconf gcc-g++ gcc libaio |ibaio-dev make

Note

Y ou could find adlight variation of the package names depending on the version and linux distribution. (for
example gcc-c++ on Fedora versus g++ on Debian systems)

40.1.2. Invoking the compilation

Inthedistribution, inthe nat i ve- sr ¢ directory, execute the shell script boot st rap. This script will invoke aut omake
and meke what will create all the make files and the native library.

soneUser @oneBox: / messagi ng-di stri buti on/native-src$./bootstrap
checking for a BSD-conpatible install... /usr/bin/install -c
checki ng whet her build environment is sane... yes

checking for a thread-safe nkdir -p... /bin/nkdir -p

configure: creating ./config.status
config.status: creating Mkefile
config.status: creating ./src/Makefile
config.status: creating config.h
config.status: config.h is unchanged
config.status: executing depfil es commands
config.status: executing libtool comrands

The produced library will be a ./ native-src/src/.libs/libHornet QA O so. Simply move that file over bi n on
the distribution or the place you have chosen on the library path.

If you want to perform changes on the HornetQ libaio code, you could just call make directly at the nati ve-src
directory.

177

41

Thread management

This chapter describes how HornetQ uses and pools threads and how you can manage them.

First we'll discuss how threads are managed and used on the server side, then we'll 1ook at the client side.

41.1. Server-Side Thread Management

Each HornetQ Server maintains a single thread pool for general use, and a scheduled thread pool for scheduled use.
A Java scheduled thread pool cannot be configured to use a standard thread pool, otherwise we could use a single
thread pool for both scheduled and non scheduled activity.

When using old (blocking) 10, a separate thread pool is also used to service connections. Since old 1O requires a
thread per connection it does not make sense to get them from the standard pool as the pool will easily get exhausted
if too many connections are made, resulting in the server "hanging" since it has no remaining threads to do anything
else. If you require the server to handle many concurrent connections you should make sure you use NIO, not old 10.

When using new 10 (NI10O), HornetQ will, by default, use a number of threads equal to three times the number of
cores (or hyper-threads) asreported by Runtime.getRuntime().avail ableProcessors() for processing incoming packets.
If you want to override this value, you can set the number of threads by specifying the parameter ni o- r enot i ng-
t hr eads in the transport configuration. See the Chapter 16 for more information on this.

There are also a small number of other places where threads are used directly, we'll discuss each in turn.
41.1.1. Server Scheduled Thread Pool

The server scheduled thread poal is used for most activities on the server side that require running periodically or
with delays. It mapsinternally to aj ava. uti | . concurrent . Schedul edThr eadPool Execut or instance.

The maximum number of thread used by this pool isconfigurein hor net g- conf i gur ati on. xm with theschedul ed-
t hr ead- pool - max- si ze parameter. The default value is 5 threads. A small number of threads is usually sufficient
for this pool.

41.1.2. General Purpose Server Thread Pool

This general purpose thread pool is used for most asynchronous actions on the server side. It maps internally to a
java.util.concurrent. ThreadPool Execut or instance.

The maximum number of thread used by this pool is configure in hor net g- conf i gurati on. xm with the t hr ead-
pool - mex- si ze parameter.

178

Thread management

If avalue of -1 is used this signifies that the thread pool has no upper bound and new threads will be created on
demand if there are not enough threads available to satisfy arequest. If activity later subsides then threads are timed-
out and closed.

If avalue of n where nis a positive integer greater than zero is used this signifies that the thread pool is bounded.
If more requests come in and there are no free threads in the pool and the pool is full then requests will block until
athread becomes available. It is recommended that a bounded thread pool is used with caution since it can lead to
dead-lock situationsif the upper bound is chosen to be too low.

The default value for t hr ead- pool - max- si ze IS 30.

See the J2SE javadoc [http://java.sun.com/j2se/1.5.0/docs/api/javalutil/concurrent/ThreadPool Executor.html] for
more information on unbounded (cached), and bounded (fixed) thread pools.

41.1.3. Expiry Reaper Thread

A single thread is also used on the server side to scan for expired messages in queues. We cannot use either of the
thread pools for this since this thread needs to run at its own configurable priority.

For more information on configuring the reaper, please see Chapter 22.
41.1.4. Asynchronous 10

Asynchronous 1O has a thread pool for receiving and dispatching events out of the native layer. You will find it on
a thread dump with the prefix HornetQ-AlO-poller-pool. HornetQ uses one thread per opened file on the journal
(thereisusualy one).

Thereisaso asinglethread used toinvoke writeson libaio. We do that to avoid context switching on libaio that would
cause performance issues. You will find this thread on a thread dump with the prefix HornetQ-AlO-writer-pool.

41.2. Client-Side Thread Management

On the client side, HornetQ maintains a single static scheduled thread pool and a single static genera thread pool for
use by all clients using the same classloader in that VM instance.

The static scheduled thread pool has a maximum size of 5 threads, and the general purpose thread pool has an
unbounded maximum size.

If required HornetQ can also be configured so that each d i ent Sessi onFact ory instance does not use these
static pools but instead maintains its own scheduled and general purpose pool. Any sessions created from that
d i ent Sessi onFact ory Will use those poolsinstead.

To configure a d i ent Sessi onFact ory instance to use its own pools, simply use the appropriate setter methods
immediately after creation, for example:

Cli ent Sessi onFactory nmyFactory = HornetQd i ent.created ientSessionFactory(...);
myFact ory. set Used obal Pool s(fal se);

nmyFact ory. set Schedul edThr eadPool MaxSi ze(10) ;

nyFact ory. set Thr eadPool MaxSi ze(-1);

179

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Thread management

If you're using the IMS API, you can set the same parameters on the ClientSessionFactory and use it to create the
Connect i onFact ory instance, for example:

Connecti onFactory nyConnecti onFactory = Hornet QIMSCl i ent. cr eat eConnect i onFact ory(nyFact ory);

If you're using JNDI to instantiate Hor net QConnect i onFact ory instances, you can also set these parameters in the
hornet g-j ms. xm file where you describe your connection factory, for example:

<connecti on-factory name="Connecti onFactory">

<connect or s>

<connector-ref connector-nanme="netty"/>
</ connect or s>
<entries>
<entry nanme="Connecti onFactory"/>
<entry nanme="XAConnecti onFactory"/>

</entries>

<use- gl obal - pool s>f al se</ use- gl obal - pool s>

<schedul ed-t hr ead- pool - max- si ze>10</ schedul ed- t hr ead- pool - max- si ze>

<t hr ead- pool - max- si ze>- 1</ t hr ead- pool - max- si ze>
</ connection-factory>

180

42

Logging

HornetQ has its own logging delegate that has no dependencies on any particular logging framework. The default
delegate delegates al its logs to the standard JDK logging [http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/],
(ak.a Java-Util-Logging: JUL). By default the server picks up its JUL configuration from al oggi ng. properti es
file found in the config directories. Thisis configured to use our own HornetQ logging formatter and will log to the
console aswell asalog file. For more information on configuring JUL visit Suns website.

Y ou can configure a different Logging Delegate programatically or via a System Property.
To do this programatically simply do the following

or g. hornet q. core. | oggi ng. Logger . set Del egat eFact or y(new Log4j LogDel egat eFactory())

WhereLog4j LogDel egat eFact ory istheimplementation of or g. hor net g. spi . core. | oggi ng. LogDel egat eFact ory
that you would like to use.

To do this via a System Property simply set the property or g. hor net g. | ogger - del egat e- f act or y- cl ass- nane t0
the delegate factory being used, i.e.

- Dor g. hor net g. | ogger - del egat e-f act ory- cl ass- nane=or g. hor net g. i nt egrati on. | oggi ng. Log4j LogDel eg%t eFactory

Asyou can see in the above example HornetQ provides some Delegate Factories for your convenience. these are
1. org.hornetq.core.logging.impl.JUL LogDelegateFactory - the default that uses JUL.
2. org.hornetq.integration.logging.L og4jL ogDelegateFactory - which uses Log4J

If you configure your client's logging to use the JUL delegate, make sure you provide al oggi ng. properti es file
and set thej ava. util .l oggi ng. config. file property on client startup

42.1. Logging With The JBoss Application Server

When HornetQ isdepl oyed within the JBoss Application Server version 5.x or abovethenit will still use JUL however
the logging is redirected to the default JBoss logger. For more information on this refer to the JBoss documentation.
In versions before this you must specify what logger delegate you want to use.

181

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

43

Embedding HornetQ

HornetQ is designed as set of simple Plain Old Java Objects (POJOs). This means HornetQ can be instantiated and
run in any dependency injection framework such as JBoss Microcontainer, Spring or Google Guice. It also meansthat
if you have an application that could use messaging functionality internally, then it can directly instantiate HornetQ
clients and serversin its own application code to perform that functionality. We cal this embedding HornetQ.

Examples of applications that might want to do this include any application that needs very high performance,
transactional, persistent messaging but doesn't want the hassle of writing it all from scratch.

Embedding HornetQ can be done in very few easy steps. Instantiate the configuration object, instantiate the server,
start it, and you have a HornetQ running in your virtual machine. It's as simple and easy as that.

43.1. POJO instantiation

Y ou can follow this step-by-step guide:

Create the configuration object - this contains configuration information for a HornetQ. If you want to configure it
from afile on the classpath, use Fi | eConf i gur ati onl npl

i mport org. hornetq. core. config. Configuration;
i mport org.hornetq.core.config.inpl.FileConfiguration;

Configuration config = new FileConfiguration();
config.setConfigurationUrl (url ToYourconfigfile);
config.start();

If you don't need to support a configuration file, just use Confi gurati onl npl and change the config parameters
accordingly, such as adding acceptors.

The acceptors are configured through Conf i gur at i onl npl . Just add the Net t yAccept or Fact or y on the transportsthe
same way you would through the main configuration file.

i mport org. hornetq.core.config. Configuration;
i mport org. hornetq.core.config.inpl.Configurationlnpl;

Configuration config = new Configurationlnpl();
HashSet <Tr ansport Confi gurati on> transports = new HashSet <Transport Confi gurati on>();

182

Embedding HornetQ

transports. add(new Transport Confi gurati on(NettyAcceptorFactory. cl ass. getNane()));
transports. add(new Transport Confi guration(lnVMAccept or Factory. cl ass. get Nane()));

config. set AcceptorConfigurations(transports);

Y ou need to instantiate and start HornetQ server. Theclassor g. hor net g. api . cor e. ser ver . Hor net Qhasafew static
methods for creating servers with common configurations.

i mport org. hornetq.api.core.server. Hornet Q
i mport org. hornetq. core. server. Hor net QServer

Hor net QSer ver server = Hornet Q newHor net Ser ver (confi g);

server.start();

Y ou also have the option of instantiating Hor net QSer ver I npl directly:

Hor net QServer server =
new Hor net QSer ver | npl (confi g);
server.start();

43.2. Dependency Frameworks

You may also choose to use a dependency injection framework such as JBoss Micro Container™ or Spring
Framework ™.

HornetQ standal one uses JBoss Micro Container astheinjection framework. Hor net QBoot st r apSer ver and hor net g-
beans. xm which are part of the HornetQ distribution provide a very complete implementation of what's needed to
bootstrap the server using JBoss Micro Container.

When using JBoss Micro Container, you need to provide an XML file declaring the Hor net QServer and
Conf i gur at i on object, you can also inject a security manager and aM Bean server if you want, but those are optional.

A very basic XML Bean declaration for the JBoss Micro Container would be:

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oynment xm ns="ur n:j boss: bean-depl oyer: 2. 0">

<l-- The core configuration -->
<bean name="Confi gurati on"

cl ass="org. hornetq. core.config.inpl.FileConfiguration">
</ bean>

<l-- The core server -->
<bean nanme="Hor net QSer ver"
cl ass="org. hor net q. core. server. i npl . Hor net QSer ver | npl " >
<construct or >
<par anet er >
<i nj ect bean="Configuration"/>

183

Embedding HornetQ

</ par anet er >
</ constructor>
</ bean>
</ depl oynent >

Hor net QBoot st r apSer ver provides an easy encapsulation of JBoss Micro Container.

Hor net QBoot st rapServer boot Strap =
new Hor net QBoot strapServer(new String[] {"hornetqg-beans.xm"});
boot Strap. run();

43.3. Connecting to the Embedded HornetQ
To connect clients to HornetQ you just create the factories as normal:
43.3.1. Core API

If using the core AP, just create the d i ent Sessi onFact ory and use the regular core API.

C i ent Sessi onFactory nettyFactory = HornetQC ient.created ientSessionFactory(
new Transport Confi gurati on(
I nVMConnect or Fact ory. cl ass. get Nane()));
C i ent Sessi on session = factory. createSession();
sessi on. cr eat eQueue(" exanpl e", "exanple", true);
Cl i ent Producer producer = session.createProducer("exanple");
d i ent Message nmessage = session. creat eMessage(true);
message. get Body() . witeString("Hello");
pr oducer . send(message) ;
session.start();
d i ent Consuner consuner = session. creat eConsuner ("exanpl e");
Cl i ent Message nsgRecei ved = consuner.receive();

Systemout. println("nessage = " + nsgRecei ved. get Body().readString());

sessi on. cl ose();

43.3.2. IMS API

Connection on an Embedded HornetQ through IMSis also ssimple. Just instantiate Connect i onFact ory directly. The
following example illustrates that.

Connecti onFactory cf =
Hor net QIMSC i ent . cr eat eConnect i onFact or y(
new Transport Confi gurati on(l nVMConnect or Factory. cl ass. get Nane()));

184

Embedding HornetQ

Connection conn = cf.createConnection();

conn.start();

Sessi on sess = conn. creat eSession(true, Session. SESSI ON_TRANSACTED) ;

MessageProducer prod = sess. creat eProducer (queue);

Text Message nmsg = sess. creat eText Message("Hello!");

prod. send(nsg) ;

sess.commit();

MessageConsumer consuner = sess. creat eConsuner (queue);

Text Message txtnsg = (Text Message) consuner.receive();

Systemout.println("Msg = " + txtnsg.getText());

sess.commit();

conn. cl ose();

43.4. IMS Embedding Example

Please see Section 11.2.1 for an example which shows how to setup and run HornetQ embedded with IMS.

185

Intercepting Operations

HornetQ supports interceptor s to intercept packets entering the server. Any supplied interceptors would be called for
any packet entering the server, this alows custom code to be executed, e.g. for auditing packets, filtering or other
reasons. Interceptors can change the packets they intercept.

44.1. Implementing The Interceptors

A interceptor must implement the I nt er cept or i nterface:

package org. hornetq. api.core.interceptor;

public interface Interceptor

{

bool ean i ntercept (Packet packet, RenotingConnection connecti on)
t hrows Hor net QExcepti on;

The returned boolean value isimportant:
» if true isreturned, the process continues normally

< if fal se isreturned, the processis aborted, no other interceptors will be called and the packet will not be handled
by the server at al.

44.2. Configuring The Interceptors

The interceptors are configured in hor net g- conf i gur ati on. xni :

<renoti ng-i nterceptors>

<cl ass- nane>or g. hor net g. j ms. exanpl e. Logi nl nt er cept or </ cl ass- nane>

<cl ass- nane>or g. hor net q. j ms. exanpl e. Addi ti onal Propertyl nterceptor</cl ass- nane>
</renoting-interceptors>

The interceptors classes (and their dependencies) must be added to the server classpath to be properly instantiated
and called.

44.3. Interceptors on the Client Side

186

Intercepting Operations

The interceptors can aso be run on the client side to intercept packets sent by the server by adding the interceptor to
the d i ent Sessi onFact ory With the addl nt er cept or () method.

The interceptors classes (and their dependencies) must be added to the client classpath to be properly instantiated
and called from the client side.

44.4. Example

See Section 11.1.18 for an example which shows how to use interceptors to add properties to amessage on the server.

187

45

Interoperability

45.1. Stomp

Stomp [http://stomp.codehaus.org/] is atext-orientated wire protocol that allows Stomp clients to communicate with
Stomp Brokers.

Stomp clients [http://stomp.codehaus.org/Clients] are available for several languages and platforms making it agood
choice for interoperability.

45.1.1. Native Stomp support

HornetQ provides native support for Stomp. To be able to send and receive Stomp messages, you must configure a
Net t yAccept or With aprot ocol parameter set to st onp:

<accept or nane="st onp-acceptor">
<factory-class>org. hornetq. core.renoting.inpl.netty. NettyAcceptorFactory</factory-class>
<par am key="protocol " val ue="stonp"/>
<param key="port" val ue="61613"/>

</ accept or >

With this configuration, HornetQ will accept Stomp connections on the port 61613 (which is the default port of the
Stomp brokers).

See the st omp example which shows how to configure a HornetQ server with Stomp.
45.1.1.1. Limitations

M essage acknowledgements are not transactional. The ACK frame can not be part of atransaction (it will be ignored
if itstransact i on header is set).

45.1.2. Mapping Stomp destinations to HornetQ addresses and queues

Stomp clients deal s with destinations when sending messages and subscribing. Destination names are simply strings
which are mapped to some form of destination on the server - how the server tranglates these is left to the server
implementation.

In HornetQ, these destinations are mapped to addresses and queues. When a Stomp client sends a message (using a
SEND frame), the specified destination is mapped to an address. When a Stomp client subscribes (or unsubscribes) for
adestination (using a SUBSCRI BE Or UNSUBSCRI BE frame), the destination is mapped to a HornetQ queue.

188

http://stomp.codehaus.org/
http://stomp.codehaus.org/Clients

Interoperability

45.1.3. Stomp and JMS interoperabilty

45.1.3.1. Using JMS destinations

As explained in Chapter 9, IMS destinations are also mapped to HornetQ addresses and queues. If you want to use
Stomp to send messages to JM S destinations, the Stomp destinations must follow the same convention:

e send or subscribe to a M S Queue by prepending the queue name by j ns. queue. .

For example, to send a message to the or der s IM S Queue, the Stomp client must send the frame:

SEND
destination:jms. queue. orders

hel |l o queue orders
@

e send or subscribe to a JM S Topic by prepending the topic name by j ns. t opi c. .

For example to subscribe to the st ocks JMS Topic, the Stomp client must send the frame:

SUBSCRI BE
destination:jns.topic.stocks

~@

45.1.3.2. Send and consuming Stomp message from JMS or HornetQ Core API

Stomp is mainly atext-orientated protocol. To make it simpler to interoperate with IMS and HornetQ Core API, our
Stomp implementation checks for presence of the cont ent - | engt h header to decide how to map a Stomp message
to aJMS Message or a Core message.

If the Stomp message has a cont ent - 1 engt h header, it will be mapped to a IMS TextMessage or a Core message
with asingle nullable SmpleString in the body buffer.

Alternatively, if the Stomp message does not have a content-1ength header, it will be mapped to a JMS
BytesMessage or a Core message with a byte[] in the body buffer.

The same logic applies when mapping a IMS message or a Core message to Stomp. A Stomp client can check the
presence of the cont ent - | engt h header to determine the type of the message body (UTF-8 String or bytes).

45.1.4. Stomp Over Web Sockets

HornetQ a so support Stomp over Web Sockets [http://dev.w3.org/html5/websockets/]. Modern web browser which
support Web Sockets can send and receive Stomp messages from HornetQ.

To enable Stomp over Web Sockets, you must configureaNet t yAccept or Withapr ot ocol parameter settost onp_ws:

189

http://dev.w3.org/html5/websockets/

Interoperability

<accept or nane="st onp-ws-acceptor">

<factory-class>org. hornetq. core.renmoting.inpl.netty. NettyAcceptorFactory</factory-class>
<par am key="prot ocol " val ue="stonp_ws"/>

<param key="port" val ue="61614"/>

</ accept or >

With this configuration, HornetQ will accept Stomp connections over Web Sockets on the port 61614 with the URL
path/ st omp. Web browser can then connect tows: / / <ser ver >: 61614/ st onp using a\Web Socket to send and receive
Stomp messages.

A companion JavaScript library to ease client-side development is available from GitHub [http://github.com/
jmesnil/stomp-websocket] (please see its documentation [http://jmesnil.net/stomp-websocket/doc/] for a complete
description).

Thest onp- websocket s example shows how to configure HornetQ server to have web browsers and Java applications
exchanges messages on a JM S topic.

45.1.5. StompConnect

StompConnect [http://stomp.codehaus.org/StompConnect] is a server that can act as a Stomp broker and proxy the
Stomp protocol to the standard IMS API. Consequently, using StompConnect it is possible to turn HornetQ into a
Stomp Broker and use any of the available stomp clients. These include clients written in C, C++, ¢# and .net etc.

To run StompConnect first start the HornetQ server and make sure that it isusing JNDI.

Stomp requiresthefilej ndi . properti es to be available on the classpath. This should look something like:

java.nam ng.factory.initial=org.jnp.interfaces. Nam ngCont ext Factory
j ava. nam ng. provi der. url =j np://1 ocal host: 1099
java. nam ng. factory. url.pkgs=org.jboss. nam ng: org. jnp.interfaces

Make sure this file is in the classpath along with the StompConnect jar and the HornetQ jars and ssimply run j ava

or g. codehaus. st onp. j ns. Mai n.

45.2. REST

REST support coming soon!

45.3. AMQP

AMOQP support coming soon!

190

http://github.com/jmesnil/stomp-websocket
http://jmesnil.net/stomp-websocket/doc/
http://stomp.codehaus.org/StompConnect

46

Performance Tuning

In this chapter we'll discuss how to tune HornetQ for optimum performance.

46.1. Tuning persistence

Put the message journal on its own physical volume. If the disk is shared with other processes e.g. transaction
co-ordinator, database or other journals which are also reading and writing from it, then this may greatly reduce
performance since the disk head may be skipping all over the place between the different files. One of the
advantages of an append only journal isthat disk head movement is minimised - this advantage is destroyed if the
disk is shared. If you're using paging or large messages make sure they're ideally put on separate volumes too.

Minimum number of journa files. Set j ournal -min-files to a number of files that would fit your average
sustainablerate. If you see new files being created on the journal data directory too often, i.e. lots of datais being
persisted, you need to increase the minimal number of files, this way the journal would reuse more files instead
of creating new datafiles.

Journal filesize. The journal file size should be aligned to the capacity of acylinder on the disk. The default value
10MiB should be enough on most systems.

Use AlOjournal. If using Linux, try to keep your journal type as A1O. A1O will scale better than Java NI O.
Tunej ournal - buf fer-ti meout . The timeout can be increased to increase throughput at the expense of latency.

If you're running A10 you might be able to get some better performance by increasingj our nal - max-i o. DONOT
change this parameter if you are running NIO.

46.2. Tuning JMS

There are afew areas where some tweaks can be done if you are using the IMS API

Disable messageid. Usethe set Di sabl eMessagel D() method on the MessagePr oducer classto disable message
ids if you don't need them. This decreases the size of the message and also avoids the overhead of creating a
unique ID.

Disable message timestamp. Use the set Di sabl eMessageTi meSt anp() method on the MessagePr oducer classto
disable message timestamps if you don't need them.

Avoid vj ect Message. Qbj ect Message iS convenient but it comes at a cost. The body of a vj ect Message USes
Java serialization to serialize it to bytes. The Java serialized form of even small objectsis very verbose so takes
up alot of space on the wire, aso Java serialization is slow compared to custom marshalling techniques. Only

191

Performance Tuning

use bj ect Message if you realy can't use one of the other message types, i.e. if you really don't know the type
of the payload until run-time.

Avoid AUTO_ACKNOALEDGE. AUTO_ACKNOW.EDGE mode requires an acknowledgement to be sent from the server for
each message received on the client, thismeans moretraffic on the network. If you can, use DUPS_OK_ACKNOW.EDGE
Or use CLI ENT_ACKNOW.EDGE or atransacted session and batch up many acknowledgementswith one acknowledge/
commit.

Avoid durable messages. By default IMS messages are durable. If you don't really need durable messages then
set them to be non-durable. Durable messages incur alot more overhead in persisting them to storage.

Batch many sends or acknowledgements in a single transaction. HornetQ will only require a network round trip
on the commit, not on every send or acknowledgement.

46.3. Other Tunings

There are various other places in HornetQ where we can perform some tuning:

Use Asynchronous Send A cknowledgements. If you need to send durable messages non transactionally and you
need aguarantee that they have reached the server by the timethe call to send() returns, don't set durable messages
to be sent blocking, instead use asynchronous send acknowledgements to get your acknowledgements of send
back in a separate stream, see Chapter 20 for more information on this.

Use pre-acknowledge mode. With pre-acknowledge mode, messages are acknowledged bef or e they are sent to
the client. This reduces the amount of acknowledgement traffic on the wire. For more information on this, see
Chapter 29.

Disable security. Y ou may get asmall performance boost by disabling security by setting the securi t y- enabl ed
parameter to f al se in hor net g- confi gurati on. xni .

Disable persistence. If you don't need message persistence, turn it off altogether by setting per si st ence- enabl ed
tofalsein hor net g- confi gurati on. xni .

Sync transactions lazily. Setting j our nal - sync-transactional tO fal se in hornet g-configuration. xn can
give you better transactional persistent performance at the expense of some possihility of loss of transactions on
failure. See Chapter 20 for more information.

Sync non transactional lazily. Setting journal -sync-non-transactional {0 false in hornetg-
configuration.xn can give you better non-transactional persistent performance at the expense of some
possibility of loss of durable messages on failure. See Chapter 20 for more information.

Send messages non blocking. Setting bl ock- on- dur abl e- send and bl ock- on- non- dur abl e- send tO fal se in
hornet g-j ms. xm (if you'reusing JIMS and JNDI) or directly on the ClientSessionFactory. This means you don't
have to wait a whole network round trip for every message sent. See Chapter 20 for more information.

If you have very fast consumers, you can increase consumer-window-size. This effectively disables consumer
flow contral.

Socket NIO vs Socket Old 10. By default HornetQ uses old (blocking) on the server and the client side (see the
chapter on configuring transports for more information Chapter 16). NIO is much more scal able but can give you

192

Performance Tuning

some latency hit compared to old blocking 10. If you need to be able to service many thousands of connectionson
the server, then you should make sure you're using NIO on the server. However, if don't expect many thousands
of connections on the server you can keep the server acceptors using old 1O, and might get a small performance
advantage.

Usethe core API not IMS. Using the IMS API you will have slightly lower performance than using the core API,
since al JMS operations need to be trandlated into core operations before the server can handle them. If using the
core AP try to use methods that take Si npl eSt ri ng as much as possible. si npl eStri ng, unlike java.lang.String
does not require copying before it is written to the wire, so if you re-use Si npl eSt ri ng instances between calls
then you can avoid some unnecessary copying.

46.4. Tuning Transport Settings

TCP buffer sizes. If you have afast network and fast machines you may get a performance boost by increasing
the TCP send and receive buffer sizes. See the Chapter 16 for more information on this.

Increase limit on file handles on the server. If you expect a lot of concurrent connections on your servers, or
if clients are rapidly opening and closing connections, you should make sure the user running the server has
permission to create sufficient file handles.

This varies from operating system to operating system. On Linux systems you can increase the number of
allowable open file handlesin thefile/ et c/ security/limts. conf eg. add thelines

serveruser sof t nofile 20000
serveruser har d nofile 20000

Thiswould allow up to 20000 file handles to be open by the user ser veruser.

Use bat ch- del ay and set di rect - del i ver to false for the best throughput for very small messages. HornetQ
comes with a preconfigured connector/acceptor pair (net t y-t hr oughput) in hor net g- confi gurati on. xni and
JMS connection factory (Thr oughput Connect i onFact ory) in hor net g-j ms. xni which can be used to give the
very best throughput, especially for small messages. See the Chapter 16 for more information on this.

46.5. Tuning the VM

We highly recommend you use the latest Java VM for the best performance. We test internally using the Sun JVM,
so some of these tunings won't apply to JDK's from other providers (e.g. IBM or JRockit)

Garbage collection. For smooth server operation we recommend using a parallel garbage collection algorithm,
e.g. using the VM argument - XX: +UsePar al | el GCon Sun JDKs.

Memory settings. Give as much memory as you can to the server. HornetQ can run in low memory by using
paging (described in Chapter 24) but if it can run with all queues in RAM this will improve performance. The
amount of memory you require will depend on the size and number of your queues and the size and number of
your messages. Usethe JVM arguments - Xns and - Xnx to set server available RAM. We recommend setting them
to the same high value.

193

Performance Tuning

Aggressive options. Different JVMs provide different sets of JVM tuning parameters, for the Sun Hotspot
JVM the full list of options is available here [http://java.sun.com/javase/technol ogies/hotspot/vmoptions.jsp].
We recommend at least using - Xx: +Aggr essi vept s and - XX: +UseFast Accessor Met hods. Y OU may get some
mileage with the other tuning parameters depending on your OS platform and application usage patterns.

46.6. Avoiding Anti-Patterns

Re-use connections / sessions / consumers / producers. Probably the most common messaging anti-pattern we
see is users who create a new connection/session/producer for every message they send or every message they
consume. This is a poor use of resources. These objects take time to create and may involve several network
round trips. Always re-use them.

Note

Some popular libraries such asthe Spring JIM S Template are known to use these anti-patterns. If you're using
Spring JM S Template and you're getting poor performance you know why. Don't blame HornetQ! The Spring
JMS Template can only safely be used in an app server which caches IMS sessions (e.g. using JCA), and
only then for sending messages. It cannot be safely be used for synchronously consuming messages, even
in an app server.

Avoid fat messages. Verbose formats such as XML take up alot of space on the wire and performance will suffer
asresult. Avoid XML in message bodies if you can.

Don't create temporary queues for each request. This common anti-pattern involves the temporary queue request-
response pattern. With the temporary queue request-response pattern a message is sent to atarget and a reply-to
header is set with the address of alocal temporary queue. When the recipient receives the message they process
it then send back a response to the address specified in the reply-to. A common mistake made with this pattern
isto create a new temporary queue on each message sent. This will drastically reduce performance. Instead the
temporary queue should be re-used for many requests.

Don't use Message-Driven Beans for the sake of it. As soon as you start using MDBs you are greatly increasing
the codepath for each message received compared to a straightforward message consumer, since a lot of extra
application server code is executed. Ask yourself do you really need MDBs? Can you accomplish the same task
using just a normal message consumer?

194

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp

4/

Configuration Reference

This section is a quick index for looking up configuration. Click on the element name to go to the specific chapter.

47.1. Server Configuration

47.1.1. hornetg-configuration.xml

Thisisthe main core server configuration file.

Table47.1. Server Configuration

Element Name

Element Type

Description

Default

backup

backup-connector-ref

bindings-directory

clustered

connection-ttl-override

Boolean

String

String

Boolean

Long

true means that this server
is a backup to another
node in the cluster

the name of the remoting
connector to connect to
the backup node

the directory to store the
persisted bindingsto

true means that the server
is clustered

if set, this will override
how long (in ms) to keep
aconnection alive without
receiving a ping.

fase

data/bindings

fase

create-bindings-dir

create-journal -dir

Continued..

Boolean

Boolean

true means that the server
will create the bindings
directory on start up

true meansthat the journa
directory will be created

true

true

195

Configuration Reference

file-deployment-enabled

Boolean

true means that the server
will load configuration
from the configuration
files

true

id-cache-size

Integer

the size of the cache for
pre creating message id's

2000

journal-buffer-size

Long

The size of the interna
buffer on the journal.

128 KiB

journal -buffer-timeout

journal-compact-min-
files

journal-compact-
percentage

Long

Integer

Integer

The timeout (in
nanoseconds) used to
flush interna buffers on
thejournal.

The minimal number of
data files before we can
start compacting

The percentage of live
data on which we consider
compacting the journal

20000

10

30

journal-directory

String

the directory to store the
journal filesin

data/journal

journa-file-size

Long

the size (in bytes) of each
journal file

128 * 1024

journal-max-io

journal-min-files

journal-sync-transactional

Integer

Integer

Boolean

the maximum number of
write requests that can be
in the AIO queue at any
onetime

how many journal filesto
pre-create

if true wait for transaction
data to be synchronized
to the journal before
returning response to
client

500

true

journal-sync-non-
transactiona

journa-type

Boolean

ASYNCIOINIO

if true wait for non
transaction data to be
synced to the journa
before returning response
to client.

the type of journal to use

true

ASYNCIO

196

Configuration Reference

jmx-management-enabled Boolean true means that the|true
management APl is
available via M X
jmx-domain String the IJMX domain | org.hornetq
used to registered
HornetQ MBeans in the
MBeanServer
large-messages-directory ~ String the directory to store large | data/largemessages
messages
management-address String the name of the|jms.queue.hornetq.management
management address
to send management
messages to
cluster-user String the user used by | HORNETQ.CLUSTER.ADMIN.USER
cluster connections to
communicate between the
clustered nodes
cluster-password String the password used by | CHANGE ME!!
cluster connections to
communicate between the
clustered nodes
management-notification- String the name of the address | hornetg.notifications
address that consumers bind
to receive management
notifications
message-counter-enabled Boolean true means that message | false
counters are enabled
message-counter-max- Integer how many days to keep| 10
day-history message counter history
message-counter-sample- Long the sample period (in| 10000
period ms) to use for message
counters
message-expiry-scan- Long how often (in ms) to scan | 30000
period for expired messages
message-expiry-thread- Integer the priority of the thread | 3
priority expiring messages
paging-directory String the directory to store| data/paging

paged messagesin

197

Configuration Reference

persist-delivery-count- Boolean true means that the|false

before-delivery delivery count is persisted
before delivery. False
means that this only
happens after a message

has been cancelled.
persi stence-enabled Boolean true means that the server | true

will use the file based

journal for persistence.
persist-id-cache Boolean true means that id's are| true
persisted to the journal
schedul ed-thread-pool - Integer the number of threadsthat | 5
max-size the main scheduled thread

pool has.
security-enabled Boolean true means that security is| true

enabled
security-invalidation- Long how long (in ms) to| 10000
interval wait before invalidating

the security cache
thread-pool-max-size Integer the number of threads that | -1

the main thread pool has.

-1 means no limit
async-connection- Boolean Should incoming packets | true
execution-enabled on the server be handed

off to a thread from the

thread pool for processing

or should they be handled

on the remoting thread?
transaction-timeout Long how long (in ms)| 60000

before a transaction can

be removed from the

resource manager after

create time
transaction-timeout-scan- Long how often (in ms) to scan | 1000
period for timeout transactions
wild-card-routing- Boolean true means that the server | true
enabled supportswild card routing
memory-measure-interval Long frequency to sample WM | -1

memory in ms (or

198

Configuration Reference

-1 to disable memory
sampling)

memory-warning- Integer Percentage of available| 25

threshold memory which threshold a
warning log

connectors Connector a list of remoting
connectors configurations
to create

connector.name String Name of the connector -

(attribute) mandatory

connector.factory-class String Name of the
ConnectorFactory
implementation -
mandatory

connector.param

A connector configuration
parameter

A key-value pair used to
configurethe connector. A
connector can have many
param

connector.param.key String Key of a configuration
(attribute) parameter - mandatory
connector.param.value String Vaue of a configuration
(attribute) parameter - mandatory
acceptors Acceptor a list of remoting
acceptors to create
acceptor.name (attribute) String Name of the acceptor -
optional
acceptor.factory-class String Name of the
AcceptorFactory
implementation -
mandatory

acceptor.param

An acceptor configuration
parameter

A key-value pair used to
configurethe acceptor. An
acceptor can have many
param

acceptor.param.key String Key of a configuration
(attribute) parameter - mandatory
acceptor.param.value String Vaue of a configuration

(attribute)

parameter - mandatory

199

Configuration Reference

broadcast-groups BroadcastGroup a list of broadcast groups
to create
broadcast-group.name String a unigue name for
(attribute) the broadcast group -
mandatory
broadcast-group.local - String local bind address that the | wildcard IP address
bind-address datagram socket is bound | chosen by the kernel
to
broadcast-group.local- Integer local port to which the | -1 (anonymous port)
bind-port datagram socket is bound
to
broadcast-group.group- String multicast addressto which
address the data will be broadcast
- mandatory
broadcast-group.group- Integer UDP port number used for
port broadcasting - mandatory
broadcast- Long period in milliseconds | 2000 (in milliseconds)
group.broadcast-period between consecutive
broadcasts
broadcast- A pair of connector A par connector and

group.connector-ref

optional backup connector
that will be broadcasted. A
broadcast-group can have
multiple connector-ref

broadcast-
group.connector-
ref.connector-name
(attribute)

broadcast-
group.connector-
ref.backup-connector-
name (attribute)

String

String

Name of the Ilive
connector - mandatory

Name of the backup
connector - optional

discovery-groups

DiscoveryGroup

alist of discovery groups
to create

discovery-group.name
(attribute)

String

a uniqgue name for
the discovery group -
mandatory

200

Configuration Reference

discovery-group.local- String the discovery group will
bind-address be bound only to thislocal
address
discovery-group.group- String Multicast IP address of
address the group to listen on -
mandatory
discovery-group.group- Integer UDP port of the multicast
port group - mandatory
discovery-group.refresh- Integer Period the discovery | 5000 (in milliseconds)
timeout group waits after
receiving the last

broadcast from a
particular server before
removing that servers
connector pair entry from

itslist.
diverts Divert alist of divertsto use
divert.name (attribute) String a unique name for the

divert - mandatory

divert.routing-name String the routing name for the
divert - mandatory

divert.address String the address this divert will
divert from - mandatory

divert.forwarding-address String the forwarding addressfor
the divert - mandatory

divert.exclusive Boolean isthisdivert exclusive? | fase

divert.filter String an optional core filter | null
expression

divert.transformer-classs String an optional class name of

name atransformer

gueues Queue a list of pre configured

queues to create

gueues.name (attribute) String unique name of this queue

gueues.address String address for this queue -
mandatory

gueues.filter String optional core filter | null

expression for this queue

201

Configuration Reference

gueues.durable Boolean isthis queue durable? true
bridges Bridge alist of bridgesto create
bridges.name (attribute) String unique name for this
bridge
bridges.queue-name String name of queue that this
bridge consumes from -
mandatory
bridges.forwarding- String address to forward to. If | null
address omitted original addressis
used
bridgesfilter String optiona core filter | null
expression
bridges.transformer-class- String optiona name of | null
name transformer class
bridges.retry-interval Long period (in ms) between | 2000 ms
successive retries
bridges.retry-interval- Double multiplier to apply to|1.0
multiplier successive retry intervals
bridges.reconnect- Integer maximum number of | -1
attempts retry attempts, -1 signifies
infinite
bridges.failover-on- Boolean should failover be| false
server-shutdown prompted if target server
is cleanly shutdown?
bridges.use-duplicate- Boolean should duplicate detection | true
detection headers be inserted in
forwarded messages?
bridges.discovery-group- String name of discovery group | null
ref used by this bridge
bridges.connector- String name of connector to use
ref.connector-name for live connection
(attribute)
bridges.connector- String optiona name of | null

ref.backup-connector-
name (attribute)

connector to use for
backup connection

cluster-connections

ClusterConnection

a list of cluster
connections

202

Configuration Reference

cluster-connections.name String unique name for this
(attribute) cluster connection
cluster- String name of address this
connections.address cluster connection applies
to
cluster- Boolean should messages be load | false
connections.forward- balanced if there are no
when-no-consumers matching consumers on
target?
cluster-connections.max- Integer maximum number of | 1
hops hops cluster topology is
propagated
cluster-connections.retry- Long period (in ms) between 2000
interval successive retries
cluster-connections.use- Boolean should duplicate detection | true
duplicate-detection headers be inserted in
forwarded messages?
cluster- String name of discovery group | null
connections.discovery- used by this bridge
group-ref
cluster- String name of connector to use
connections.connector- for live connection
ref.connector-name
(attribute)
cluster- String optional name of | null
connections.connector- connector to wuse for
ref.backup-connector- backup connection
name (attribute)
security-settings Security Setting alist of security settings
security-settings.match String the string to use for
(attribute) matching security against
an address
security- Security Permission a permision to add to the
settings.permission address
security- Permission Type the type of permission

settings.permission.type
(attribute)

203

Configuration Reference

security- Roles a comma-separated list
settings.permission.roles of roles to apply the
(attribute) permission to
address-settings AddressSetting alist of address settings
address-settings.dead- String the address to send dead
|etter-address messages to
address-settings.max- Integer how many times to|10
delivery-attempts attempt to deliver a
message before sending to
dead |etter address
address-settings.expiry- String the address to send
address expired messages to
address- Long the time (in ms) to|0
settings.redelivery-delay wait before redelivering a
cancelled message.
address-settings.|last- boolean whether to treat the queue | false
value-queue as alast value queue

address-settings.page- Long
size-bytes

address-settings.max- Long
size-bytes

address- Long
settings.redistribution-
delay

the page size (in bytes) to
use for an address

the maximum size (in
bytes) to use in paging for
an address

how long (in ms) to wait
after the last consumer is
closed on a queue before
redistributing messages.

10* 1024 * 1024

47.1.2. hornetg-jms.xml

This is the configuration file used by the server side IMS service to load IMS Queues, Topics and Connection

Factories.

Table 47.2. IMS Server Configuration

Element Name Element Type
connection-factory ConnectionFactory
Continued..

Description

a list of connection
factories to create and add
to INDI

Default

204

Configuration Reference

connection-factory.auto- Boolean whether or not message | false
group grouping is automatically
used
connection- String A list of connectors used
factory.connectors by the connection factory
connection- String Name of the connector to
factory.connectors.connector- connect to the live server
ref.connector-name
(attribute)
connection- String Name of the connector
factory.connectors.connector- to connect to the backup
ref.backup-connector- server
name (attribute)
connection- String Name of discovery group
factory.discovery-group- used by this connection
ref.discovery-group-name factory
(attribute)
connection- Long the initial time to wait (in | 10000
factory.discovery-initial- ms) for discovery groups
wait-timeout to wait for broadcasts
connection-factory.block- Boolean whether or not messages | false
on-acknowledge are acknowledged
synchronously
connection-factory.block- Boolean whether or not non- | fase
on-non-durable-send durable messages are sent
synchronously
connection-factory.block- Boolean whether or not durable| true
on-durable-send messages are sent
synchronously
connection-factory.call- Long the timeout (in ms) for | 30000
timeout remote calls
connection-factory.client- Long the period (in ms) after | 5000
failure-check-period which the client will
consider the connection
failed after not receiving
packets from the server
connection-factory.client- String the pre-configured client | null

id

ID for the connection
factory

205

Configuration Reference

connection- String the name of the load
factory.connection-load- balancing class
balancing-policy-class-
name
connection- Long thetimeto live (inms) for | 1 * 60000
factory.connection-ttl connections
connection- Integer the fastest rate a consumer | -1
factory.consumer-max- may consume messages
rate per second
connection- Integer thewindow size (in bytes) | 1024 * 1024
factory.consumer- for consumer flow control
window-size
connection-factory.dups- Integer the batch size (in bytes) | 1024 * 1024
ok-batch-size between

acknowledgements when

using

DUPS OK_ACKNOWLEDGE

mode
connection- Boolean whether or not to failover | false
factory.failover-on- to backup on event that
initial-connection initial connection to live

server fails
connection- Boolean whether or not to failover | false
factory.failover-on- on server shutdown
server-shutdown
connection-factory.min- Integer the size (in bytes) beforea| 100 * 1024
large-message-size message istreated aslarge
connection-factory.cache- Boolean If true clients using this| false
large-message-client connection factory will

hold the large message

body on temporary files.
connection-factory.pre- Boolean whether messages are| false
acknowledge pre acknowledged by the

server before sending
connection- Integer the maximum rate of | -1

factory.producer-max-
rate

messages per second that
can be sent

org.hornetq.api.core.client.loadbalance.Ro

206

Configuration Reference

connection- Integer the window size in bytes| 1024 * 1024
factory.producer- for producers sending
window-size messages
connection- Integer the window size (in|1024* 1024
factory.confirmation- bytes) for reattachment
window-size confirmations
connection- Integer maximum number of O
factory.reconnect- retry attempts, -1 signifies
attempts infinite
connection-factory.retry- Long the time (in ms) to retry a| 2000
interval connection after failing
connection-factory.retry- Double multiplier to apply to| 1.0
interval-multiplier successive retry intervals
connection-factory.max- Integer The maximum retry | 2000
retry-interval interval in the case

a retry-interval-multiplier

has been specified
connection- Integer the size of the scheduled | 5
factory.schedul ed-thread- thread pool
pool-max-size
connection- Integer the size of the thread pool | -1
factory.thread-pool -max-
size
connection- Integer the batch size (in bytes) | 1024 * 1024
factory.transaction-batch- between
size acknowledgements when

usng a transactional

session
connection-factory.use- Boolean whether or not to use|true
global-pools a global thread pool for

threads
gueue Queue a queue to create and add

to INDI
queue.name (attribute) String unigue name of the queue
gueue.entry String context where the queue

will be bound in JNDI

(there can be many)
gueue.durable Boolean is the queue durable? true

Configuration Reference

gueuefilter

topic

topic.name (attribute)

topic.entry

String

Topic

String

String

optiona filter expression
for the queue

atopicto createand add to
JNDI

unique name of the topic

context where the topic
will be bound in JNDI
(there can be many)

208

